• Title/Summary/Keyword: heat transfer correlations

Search Result 365, Processing Time 0.026 seconds

Investigation on Characteristics of Pressure Drop and Heat Transfer in the Spirally Indented Tubes (스파이럴리 인덴티드 전열관 내부에서의 압력 강하 및 전열 특성에 관한 고찰)

  • Kim, Do-Hyoung;Kim, Ik-Saeng;Kim, Kyun-Seok;Yoo, Byoung-Hoon;Kim, Chun-Dong
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.440-446
    • /
    • 2001
  • The pressure drop and heat transfer of the spirally indented tubes were measured and analyzed. Eight sample tubes of indentation depth 0.4, 0.7mm and indentation pitch 10, 14, 20, 26mm were used in this experimental tests. And all the tubes have same outer diameter of 16mm, and same indentation start number of I. Air was used as the internal fluid from 10000 to 50000 for Reynolds Number. The friction factors and heat transfer coefficients have increased when indentation depths increase and indentation pitches decrease. Finally, the correlations were made between the effect of the tube geometry and characteristics of tubes for the pressure drop and heat transfer.

  • PDF

Study on the Experiment and Numerical Computation of Forced Convection Heat Transfer around Circular Cylinder in a Rectangular Duct (사각덕트 내에서 원형 실린더 주위의 강제대류 열전달에 대한 실험과 수치계산에 관한 연구)

  • 윤영환;김경환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.490-498
    • /
    • 2004
  • This paper measures the forced convective heat transfer from heated cylinder to air flow in a rectangular duct at Re$_{D}$ =2,337, 4,589, 6,621 and 7,944 through experiments. And the heat transfer is computed by 3-D numerical computation in which various turbulent models are applied. It is shown through the comparison of experimental and computed data that numerical computation with standard k-$\varepsilon$ model predicts the experimental data most accurately. Furthermore, the correlation from the computed heat transfer is almost similar to that from the experiment when Re$_{D}$ is greater than 4,589. In addition, the correlation of McAdams is the closest to that from experimental data among various correlations from literature in the range of Reynolds number.ber.

Experimental Studies on Heat Transfer and Pressure Drop Characteristics during Gas Cooling Process of Carbon Dioxide in the Supercritical Region (이산화탄소의 초임계 가스냉각 과정의 열전달 및 압력강하 특성에 관한 실험적 연구)

  • 윤석호;김주혁;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.538-545
    • /
    • 2004
  • This paper presents the experimental data for the heat transfer and pressure drop characteristics obtained during the gas cooling process of carbon dioxide in a horizontal tube. The tube in which carbon dioxide flows is made of copper with an inner diameter of 7.73 mm. Experiments were conducted for various mass fluxes and inlet pressures of carbon dioxide. Mass fluxes are controlled at 225, 337 and 450 kg/$m^2$s and inlet pressures are adjust-ed from 7.5 to 8.8 ㎫. The experimental results in this study are compared with the existing correlations for the supercritical heat transfer coefficient, which generally under-predict the measured data. Pressure drop data agree very well with those calculated by the Blasius' equation. Based on the experimental data, a new empirical correlation to estimate the near-critical heat transfer coefficients has been developed.

An Experimental Study on Laminar Heat Transfer in Flat Aluminum Extruded Tubes Having Small Hydraulic Diameter

  • Kim, Nae-Hyun;Ham, Jung-Ho;Kim, Do-Young
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.2
    • /
    • pp.47-53
    • /
    • 2007
  • Laminar heat transfer experiments were conducted in flat extruded aluminum tubes. Three different flat tubes-two with smooth inner channel, one with micro-finned inner channel-were tested. Smooth tube data were in reasonable agreement with the predictions by simplified theoretical models. The heat transfer coefficients of the micro-fin tube were significantly smaller than those of the smooth tube. The reason was attributed to the decelerating flow in the inter-fin region. Heat transfer correlations were developed from the data.

A Convective Heat Transfer Correlation for Turbulent Gas-Liquid Two-Phase Flow in Vertical Pipes

  • Kim, Dong-Woo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.4
    • /
    • pp.27-36
    • /
    • 2001
  • A new two-phase non-boiling convective heat transfer correlation for turbulent flow $(Re_{SL}>4000)$ in vertical tubes with different fluid flow patterns and fluid combinations was developed using experimental data available from the literature. The correlation presented herein originates from a careful analysis of the major non-dimensional parameters affecting two-phase heat transfer. This model takes into account the appropriate contributions of both the liquid and gas phases using the respective cross-sectional areas occupied by the two phases. A total of 255 data points from three available studies (which included the four sets of data) were used to determine the curve-fitted constants in the improved correlation. The performance of the new correlation was compared with two-phase correlations from the literature, which were developed for specific fluid combinations.

  • PDF

A Review of Fin-and-Tube Heat Exchangers in Air-Conditioning Applications

  • Hu, Robert;Wan, Chi-Chuan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.3
    • /
    • pp.85-100
    • /
    • 2007
  • This study presents a short overview of the researches in connection to the fin-and-tube heat exchangers with and without the influence of dehumidification. Contents of this review article include the data reduction method, performance data, updated correlations, and the influence of hydrophilic coating for various enhanced fin patterns. This study emphasizes on the experimental researches. Performance of both sensible cooling and dehumidifying conditions are reported in this review article.

Cooling Characteristics of Wing Fin Heat Sink (익형 핀 히트싱크의 냉각특성)

  • 유갑종;박철우;장충선;김현우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.8
    • /
    • pp.728-740
    • /
    • 2004
  • Heat sink has extended surface area for enhanced heat transfer. The enhanced convection heat transfer has been used widely, such as cooling electronic chips in the electronics industry. Heat sink usually requires an increase in the heat transfer and a decrease in the pressure drop, and must improve the performance in the flow field of industrial plants. In this study, wing fin heat sink was studied and tests were conducted in a rectangular cross sectional channel with wing fin heat sinks. The leading and trailing ends of a wing fin have a sharp edge, simulating the airfoil feature. Empirical correlations have been developed for wing fin heat sink types. And wing fin heat sinks have better cooling performance than elliptic fin and square fin types.

Study on Film Boiling Heat Transfer of Spray Cooling in Air-Water Full Cone Spray System (물-공기 원추형 분무시스템에 있어서 분무냉각 막비등 열전달에 관한 연구)

  • Kim, Yeung-Chan;Yun, Seung-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1236-1242
    • /
    • 2006
  • The local heat flux of spray cooling in the film boiling region were experimentally investigated for the spray region of $D_{max}$ = $0.005{\sim}0.03m^3/(m^2s)$. A twin-fluid full cone spray nozzle was employed for the experiment and the distributions of droplet flow rates were obtained for air-water full cone sprays. A stainless steel block was cooled down from initial temperature of about $800^{\circ}C$ by full cone spray. In the region near the stagnation point, it was found that the experimental data are in good agreement with the results predicted from the correlations between the local heat transfer and the local droplet flow rate proposed in the previous report. However, it was found that the experimental data of $D_r$ > $0.01m^3/(m^2s)$ are a little smaller than the results predicted from the correlations.

Flow Boiling Heat Transfer of R-22 in a Flat Extruded Aluminum Multi-Port Tube

  • Kim Nae-Hyun;Sim Yang-Sup;Min Chang-Keun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.3
    • /
    • pp.148-157
    • /
    • 2004
  • Convective boiling heat transfer coefficients of R-22 were obtained in a flat extruded aluminum tube with $D_h=1.41mm$. The test range covered mass flux from 200 to $600kg/m^{2}s$, heat flux from 5 to $15kW/m^2$ and saturation temperature from $5^{\circ}C\;to\;15^{\circ}C$. The heat transfer coefficient curve shows a decreasing trend after a certain quality (critical quality). The critical quality decreases as the heat flux increases, and as the mass flux decreases. The early dryout at a high heat flux results in a unique 'cross-over' of the heat transfer coefficient curves. The heat transfer coefficient increases as the mass flux increases. At a low quality region, however, the effect of mass flux is not prominent. The heat transfer coefficient increases as the saturation temperature increases. The effect of saturation temperature, however, diminishes as the heat flux decreases. Both the Shah and the Kandlikar correlations un-derpredict the low mass flux and overpredict the high mass flux data.

A Study on Heat Transfer Characteristics of Helical Coiled Tube (나선코일의 열전달 특성에 관한 연구)

  • PARK, Jong-Un;CHO, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.16 no.2
    • /
    • pp.257-270
    • /
    • 2004
  • The two-phase closed thermosyphon is a heat transfer device capable of transfer large quantities of heat from a source to a sink by taking advantage of the high heat transfer rates associated with the evaporation and condensation of a working fluid within the device. A study was carried out with the performance of the heat transfer of the thermosyphon having 50, 60, 70, 80, 90 internal micro grooves in which boiling and condensation occur. A plain thermosyphon having the same inner and outer diameter as the grooved thermosyphon is also tested for comparison. Water, methanol and ethanol have been used as the working fluids. The liquid filling as the ratio of working fluid volume to total volume of thermosyphon, the inclination angle, micro grooves and operating temperature have been used as the experimental parameters. The heat flux and the boiling and the condensation heat transfer coefficient and overall heat transfer coefficient at the condenser and evaporator zone are estimated from the experimental results. The experimental results have been assessed and compared with existing correlations. Imura's and Kusuda's correlation for boiling showed in good agreement with experimental results within ${\pm}20$% in plain thermosyphon. The maximum heat transfer rate was obtained when the liquid fill ratio was about 25%. The high heat transfer coefficient was found between 25o and 30o of inclination angle for water and between 20o and 25o for methanol and ethanol. The relatively high rates of heat transfer have been achieved in the thermosyphon with internal micro grooves. The micro grooved thermosyphon having 60 grooves shows the best heat transfer coefficient in both condensation and boiling. The maximum enhancement (i.e. the ratio of the heat transfer coefficients of the micro grooved thermosyphon to plain thermosyphon) is 2.5 for condensation and 2.3 for boiling.