• Title/Summary/Keyword: heat tolerance

Search Result 235, Processing Time 0.031 seconds

NtHSP70-1에 의한 클로로필의 고온 내성 효과 (Overexpression of NtHSP70-1 Protects Chlorophyll from High Temperature in Plants)

  • 조은경;홍주봉
    • 생명과학회지
    • /
    • 제18권3호
    • /
    • pp.304-310
    • /
    • 2008
  • 고온 단백질 heat shcok protein 70 (HSP70)은 분자샤페론으로써 환경스트레스와 발달단계 동안 단백질을 보호하고 합성하는 다양한 과정에 관여하는 기본적인 단백질이다. 하지만 그 생물학적 기능이 식물에서 아직 정확하게 밝혀지지 않았다. 이에 본 연구에서는 담배에서 고온에 의해 유도된 HSP70인 NtHSP70-1 (AY372069)를 분리하여 그 기능을 연구하였다. NtHSP70-1의 고온 내성 기능을 분석하기 위해 NtHSP70-1이 식물 형질전환용 벡터인 pBKS1-1에 sense 또는 antisense 방향으로 도입되어 형질전환된 식물체와 pBKS1-1만 도입된 형질전환 식물체들을 제조하였다. 형질전환체에 있어서 NtHSP70-1의 발현량은 western blot 분석법을 사용하여 수행하였고 확인된 형질전환체들은 고온 내성 기능분석에 이용되었다. 그 결과 고온 환경에 있어서 NtHSP70-1이 과다발현된 형질전환체들은 그 클로로필의 함량과 생존율이 정상환경 일 때와 유사하였고 반대로 벡터 또는 벡터인 pBKS1-1에 antisense 방향으로 도입되어 형질전환된 식물체들은 클로로필의 파괴로 인한 감소된 생존율을 나타내었다. 고온 처리된 형질전환 식물체에서 클로로필의 함량비교 결과로 NtHSP70-1이 클로로필을 보호함으로써 식물의 고온내성에 기여함을 알 수 있었다.

Longevity and Stress Resistant Property of 6-Gingerol from Zingiber officinale Roscoe in Caenorhabditis elegans

  • Lee, Eun Byeol;Kim, Jun Hyeong;An, Chang Wan;Kim, Yeong Jee;Noh, Yun Jeong;Kim, Su Jin;Kim, Ju-Eun;Shrestha, Abinash Chandra;Ham, Ha-Neul;Leem, Jae-Yoon;Jo, Hyung-Kwon;Kim, Dae-Sung;Moon, Kwang Hyun;Lee, Jeong Ho;Jeong, Kyung Ok;Kim, Dae Keun
    • Biomolecules & Therapeutics
    • /
    • 제26권6호
    • /
    • pp.568-575
    • /
    • 2018
  • In order to discover lifespan-extending compounds made from natural resources, activity-guided fractionation of Zingiber officinale Roscoe (Zingiberaceae) ethanol extract was performed using the Caenorhabditis elegans (C. elegans) model system. The compound 6-gingerol was isolated from the most active ethyl acetate soluble fraction, and showed potent longevity-promoting activity. It also elevated the survival rate of worms against stressful environment including thermal, osmotic, and oxidative conditions. Additionally, 6-gingerol elevated the antioxidant enzyme activities of C. elegans, and showed a dose-depend reduction of intracellular reactive oxygen species (ROS) accumulation in worms. Further studies demonstrated that the increased stress tolerance of 6-gingerol-mediated worms could result from the promotion of stress resistance proteins such as heat shock protein (HSP-16.2) and superoxide dismutase (SOD-3). The lipofuscin levels in 6-gingerol treated intestinal worms were decreased in comparison to the control group. No significant 6-gingerol-related changes, including growth, food intake, reproduction, and movement were noted. These results suggest that 6-gingerol exerted longevity-promoting activities independently of these factors and could extend the human lifespan.

An Annealing Control Primer (ACP) System Used for the Isolation and Identification of Copper-Induced Genes in Alfalfa Leaves

  • Lee, Ki-Won;Lee, Sang-Hoon;Kim, Ki-Yong;Ji, Hee Chung;Park, Hyung Soo;Hwang, Tae Young;Choi, Gi Jun;Rahman, Md. Atikur
    • 한국초지조사료학회지
    • /
    • 제36권3호
    • /
    • pp.237-242
    • /
    • 2016
  • Copper (Cu) is a necessary microelement for plants. However, high concentrations of Cu are toxic to plants that change the regulation of several stress-induced proteins. In this study, an annealing control primer (ACP) based approach was used to identify differentially expressed Cu-induced genes in alfalfa leaves. Two-week-old alfalfa plants (Medicago sativa L.) were exposed to Cu for 6 h. Total RNAs were isolated from treated and control leaves followed by ACP-based PCR technique. Using GeneFishing ACPs, we obtained several genes those expression levels were induced by Cu. Finally, we identified several genes including UDP-glucuronic acid decarboxylase, transmembrane protein, small heat shock protein, C-type cytochrome biogenesis protein, mitochondrial 2-oxoglutarate, and trans-2,3-enoyl-CoA reductase in alfalfa leaves. These identified genes have putative functions in cellular processes such as cell wall structural rearrangements, transduction, stress tolerance, heme transport, carbon and nitrogen assimilation, and lipid biosynthesis. Response of Cu-induced genes and their identification in alfalfa would be useful for molecular breeding to improve alfalfa with tolerance to heavy metals.

Etching characteristics of Al-Nd alloy thin films using magnetized inductively coupled plasma

  • Lee, Y.J.;Han, H.R.;Yeom, G.Y.
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 1999년도 추계학술발표회 초록집
    • /
    • pp.56-56
    • /
    • 1999
  • For advanced TFT-LCD manufacturing processes, dry etching of thin-film layers(a-Si, $SiN_x$, SID & gate electrodes, ITO etc.) is increasingly preferred instead of conventional wet etching processes. To dry etch Al gate electrode which is advantageous for reducing propagation delay time of scan signals, high etch rate, slope angle control, and etch uniformity are required. For the Al gate electrode, some metals such as Ti and Nd are added in Al to prevent hillocks during post-annealing processes in addition to gaining low-resistivity($<10u{\Omega}{\cdot}cm$), high performance to heat tolerance and corrosion tolerance of Al thin films. In the case of AI-Nd alloy films, however, low etch rate and poor selectivity over photoresist are remained as a problem. In this study, to enhance the etch rates together with etch uniformity of AI-Nd alloys, magnetized inductively coupled plasma(MICP) have been used instead of conventional ICP and the effects of various magnets and processes conditions have been studied. MICP was consisted of fourteen pairs of permanent magnets arranged along the inside of chamber wall and also a Helmholtz type axial electromagnets was located outside the chamber. Gas combinations of $Cl_2,{\;}BCl_3$, and HBr were used with pressures between 5mTorr and 30mTorr, rf-bias voltages from -50Vto -200V, and inductive powers from 400W to 800W. In the case of $Cl_2/BCl_3$ plasma chemistry, the etch rate of AI-Nd films and etch selectivity over photoresist increased with $BCl_3$ rich etch chemistries for both with and without the magnets. The highest etch rate of $1,000{\AA}/min$, however, could be obtained with the magnets(both the multi-dipole magnets and the electromagnets). Under an optimized electromagnetic strength, etch uniformity of less than 5% also could be obtained under the above conditions.

  • PDF

Transcriptome-based identification of water-deficit stress responsive genes in the tea plant, Camellia sinensis

  • Tony, Maritim;Samson, Kamunya;Charles, Mwendia;Paul, Mireji;Richard, Muoki;Mark, Wamalwa;Stomeo, Francesca;Sarah, Schaack;Martina, Kyalo;Francis, Wachira
    • Journal of Plant Biotechnology
    • /
    • 제43권3호
    • /
    • pp.302-310
    • /
    • 2016
  • A study aimed at identifying putative drought responsive genes that confer tolerance to water stress deficit in tea plants was conducted in a 'rain-out shelter' using potted plants. Eighteen months old drought tolerant and susceptible tea cultivars were each separately exposed to water stress or control conditions of 18 or 34% soil moisture content, respectively, for three months. After the treatment period, leaves were harvested from each treatment for isolation of RNA and cDNA synthesis. The cDNA libraries were sequenced on Roche 454 high-throughput pyrosequencing platform to produce 232,853 reads. After quality control, the reads were assembled into 460 long transcripts (contigs). The annotated contigs showed similarity with proteins in the Arabidopsis thaliana proteome. Heat shock proteins (HSP70), superoxide dismutase (SOD), catalase (cat), peroxidase (PoX), calmodulinelike protein (Cam7) and galactinol synthase (Gols4) droughtrelated genes were shown to be regulated differently in tea plants exposed to water stress. HSP70 and SOD were highly expressed in the drought tolerant cultivar relative to the susceptible cultivar under drought conditions. The genes and pathways identified suggest efficient regulation leading to active adaptation as a basal defense response against water stress deficit by tea. The knowledge generated can be further utilized to better understand molecular mechanisms underlying stress tolerance in tea.

OsABF2를 과발현시킨 애기장대에서 비생물학적 스트레스에 대한 내성 증가 (Increased Abiotic Stress Tolerance by Over-expressing OsABF2 in Transgenic Arabidopsis thaliana)

  • 박훤범
    • 생명과학회지
    • /
    • 제22권11호
    • /
    • pp.1515-1522
    • /
    • 2012
  • 식물호르몬인 abscisic acid (ABA)는 식물의 비생물학적 스트레스의 적응과정에서 중요한 역할을 수행하고 있다. 또한 ABA는 종자휴면, 발아, 세포분열의 저해, 기공개폐와 같은 중요한 과정에 관여하고 있다. OsABF2(Oryza sativa ABRE Binding Factor2)는 벼에서 비생물학적 스트레스와 ABA 신호전달 과정에 양성적으로 관여하는 bZIP 형태의 전사인자이다. OsABF2 유전자의 발현은 ABA와 다양한 스트레스 처리에 의해 유도된다. 본 논문에서는 OsABF2 유전자를 과발현한 애기장대가 가뭄, 고염, 고온 상태에서의 생존율이 야생형보다 증가하는 것을 확인하였다. 또한 ABA가 존재하는 상황에서 OsABF2 유전자를 과발현한 애기장대의 발아율이 감소하는 것을 확인하였다. 이러한 결과로 미루어 OsABF2 유전자를 과발현한 애기장대는 비생물학적 스트레스에 대한 내성이 증가하고 ABA 감수성은 증가하는 것으로 확인되었다.

Establishment of the Measurement System of the Magnetic Field for the Study on the Magnetic Field Tolerance of TMP

  • Baik, Kyungmin;Cheung, Wan-Sup;Lim, Jong-Yeon;Choi, Kyoung-Min;Nam, Seung-Hwan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.106.1-106.1
    • /
    • 2013
  • When strong static magnetic field is applied to the TMP, it is expected that the presence of the magnetic field might retard the velocity of the blades which results in the change of the pumping speed of the TMP. However, such effect of the magnetic field on the TMP has not been well characterized. Thus, under the strong magnetic field, monitoring pumping speed as well as generated heat, pressure, and vibration of the TMP may be an important issue to understand the magnetic field tolerance of the TMP and the development of magnetic shielding technique for the key components of the pump. For this purpose, magnetic field generation system to the vertical direction by a circular current source was firstly designed and suggested [K. Baik et al., 44th Annual Conf. KVS, 22(1), 153, (2012)]. In the current study, another magnetic field generation systems are presented to apply the magnetic field to the horizontal and radial directions by the rectangular current sources and the permanent magnets respectively. Such systems were made to generate at least 50 Gauss of magnetic field along the vertical direction and at least 25 Gauss of magnetic field along the horizontal or radial direction. Current study introduces the evaluation system of the magnetic field along the vertical, horizontal, and radial directions and presents the measured experimental results of the magnetic field when such systems are combined with the equipment where TMP will be installed.

  • PDF

Acetobacter orientalis MAK88 균주를 이용한 양파 식초의 발효 최적화 (Optimization of Fermentation Condition for Onion Vinegar Using Acetobacter orientalis MAK88)

  • 이진아;이설희;박영서
    • 산업식품공학
    • /
    • 제21권4호
    • /
    • pp.403-408
    • /
    • 2017
  • 양파를 이용하여 식초를 제조하기 위하여 막걸리로부터 분리된 내산성과 내알코올성이 우수하고 산생성능이 높은 Aectoacter orientalis MAK88를 사용하였다. 양파 추출액에 A. orientalis MAK88의 종배양액을 접종하여 초산 발효를 실시하였을 경우, 발효 최적 조건을 조사하였다. 앙파 추출액 중의 초기 에탄올 농도는 5% (v/v)가 최적이었으며, 발효 144시간에서의 산도는 4.31%이었다. 초기 초산 농도는 1% (v/v)가 최적으로 발효 144시간에서의 최종 산도는 5.32%였다. 최적 발효온도는 $28^{\circ}C$로 확인되었다. 양파 착즙액은 통 양파를 $121^{\circ}C$에서 15분간 가열한 뒤 가압 착즙 후 여과한 다음 $121^{\circ}C$에서 15분간 살균하여 제조한 것이 발효에 가장 적합하였으며, 희석하지 않은 착즙 원액을 사용하는 것이 가장 좋았다.

자동차 조향장치 부품 요크의 온간 밀폐 단조 적용을 위한 금형 응력 저감 설계 및 온간 단조품의 기계적 특성 분석 (Die Stress Reduction Design and Mechanical Properties Analysis of Warm Forging Process for the Application of Warm-Closed Forging of Automative Steering Unit Yoke)

  • 성상규;김기한;이영선;이상용;윤은유
    • 소성∙가공
    • /
    • 제31권2호
    • /
    • pp.51-56
    • /
    • 2022
  • In this study, finite element analyses were performed by applying a stress ring and split die design to relieve the tensile stress acting on the die due to high surface pressure during warm-closed forging. The applied material was a yield-ratio-control-steel (YRCS). It was used without quenching or tempering after forging. In the case of stress rings design, the number of stress rings and the tolerance for shrink fit were different. Vertical and horizontal splits were applied for insert die split design. Case 5 die with three stress rings, 0.2 % shrink fit tolerance, and vertical split was selected as an effective die design for tensile stress reduction. Based on die stress reduction analyses, Case 5 die for warm-closed forging was produced and smooth forgeability was secured, making it possible to manufacture forging product of yoke with the required geometry. In addition, controlled cooling using warm forging heat was applied to secure mechanical properties of yokes. When oil cooling was used for direct controlled cooling after warm-closed forging, a relatively uniform Rockwell hardness distribution and high mechanical properties could be obtained.

The Forkhead Gene fkhB is Necessary for Proper Development in Aspergillus nidulans

  • Seo-Yeong Jang;Ye-Eun Son;Dong-Soon Oh;Kap-Hoon Han;Jae-Hyuk Yu;Hee-Soo Park
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권11호
    • /
    • pp.1420-1427
    • /
    • 2023
  • The forkhead domain genes are important for development and morphogenesis in fungi. Six forkhead genes fkhA-fkhF have been found in the genome of the model filamentous Ascomycete Aspergillus nidulans. To identify the fkh gene(s) associated with fungal development, we examined mRNA levels of these six genes and found that the level of fkhB and fkhD mRNA was significantly elevated during asexual development and in conidia. To investigate the roles of FkhB and FkhD, we generated fkhB and fkhD deletion mutants and complemented strains and investigated their phenotypes. The deletion of fkhB, but not fkhD, affected fungal growth and both sexual and asexual development. The fkhB deletion mutant exhibited decreased colony size with distinctly pigmented (reddish) asexual spores and a significantly lower number of conidia compared with these features in the wild type (WT), although the level of sterigmatocystin was unaffected by the absence of fkhB. Furthermore, the fkhB deletion mutant produced sexual fruiting bodies (cleistothecia) smaller than those of WT, implying that the fkhB gene is involved in both asexual and sexual development. In addition, fkhB deletion reduced fungal tolerance to heat stress and decreased trehalose accumulation in conidia. Overall, these results suggest that fkhB plays a key role in proper fungal growth, development, and conidial stress tolerance in A. nidulans.