• Title/Summary/Keyword: heat system

Search Result 8,876, Processing Time 0.034 seconds

Design of air-cooled waste heat removal system with string type direct contact heat exchanger and investigation of oil film instability

  • Moon, Jangsik;Jeong, Yong Hoon;Addad, Yacine
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.734-741
    • /
    • 2020
  • A new air-cooled waste heat removal system with a direct contact heat exchanger was designed for SMRs requiring 200 MW of waste heat removal. Conventional air-cooled systems use fin structure causing high thermal resistance; therefore, a large cooling tower is required. The new design replaces the fin structure with a vertical string type direct contact heat exchanger which has the most effective performance among tested heat exchangers in a previous study. The design results showed that the new system requires a cooling tower 50% smaller than that of the conventional system. However, droplet formation on a falling film along a string caused by Rayleigh-Plateau instability decreases heat removal performance of the new system. Analysis of Rayleigh-Plateau instability considering drag force on the falling film surface was developed. The analysis results showed that the instability can be prevented by providing thick string. The instability is prevented when the string radius exceeds the capillary length of liquid by a factor of 0.257 under stagnant air and 0.260 under 5 m/s air velocity.

In-situ Performance Evaluation of a Ground Source Heat Pump for an Air Conditioning System (공조시스템용 지열히트펌프의 실증평가에 관한 연구)

  • Park, Youn-Cheol;Park, Seong-Koo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.66-72
    • /
    • 2008
  • In this study, the ground source heat pump was installed at a research center in Jeju Island to verify the performance of the system and to give an information for a economic feasibility. The performance test was conducted until the heat storage tank temperature reached at $5^{\circ}C$ from $50^{\circ}C$ in the cooling operation, and until the storage temperature goes up to $50^{\circ}C$ from $10^{\circ}C$ in the heating mode. As results, the system performance shows that $2.2{\sim}3.5$ for the cooling operation and $2.5{\sim}3.5$ for heating operation. It is found that the underground is good heat source for the heat pump with $3{\sim}10^{\circ}C$ variation range. The ground source heat pump could be connected one of air conditioning system without any problem in system performance. Based on the economic analysis, the initial cost for the ground source heat pump will be compensated after 4 years operation. If the system runs 20 years, approximately 300 million Won will be saved when the air conditioning system adapt the ground source heat pump based on Life Cycle Cost analysis.

Performance Characteristics and Economic Assessment of Heat Pump Systems with the Various Heat Source (열원에 따른 열펌프의 성능 비교 및 경제성 평가)

  • Park, Cha-Sik;Park, Kyoung-Woo;Kwon, Oh-Kyung
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.1
    • /
    • pp.23-31
    • /
    • 2011
  • The objectives of this study are to analyze the performance of a heat pump system with the various heat source and to carry out economic assessment for the heat pump system. The COP of the river water and ground source heat pump system was 20% higher than that of the air source heat pump system because river water and geothermal provide stable operating temperature compared with air temperature throughout the year. In addition, the economic assessment of a heat pump system using air, river water, and geothermal as a heat source was carried out. The ratio of the life cycle operating cost to the life cycle cost increased with the increase of building capacity. The payback period was found to be less than 3.3 and 4.5 years, respectively when the capacity of the river water and ground source heat pump was larger than 10 RT.

A Study on the High Efficiency Ground Source Heat Pump System (1) (부하추종형 고효율 지열히트펌프 시스템에 관한 연구 (1))

  • Koh, Deuk-Yong;Kim, Ook-Joong;Choi, Sang-Kyu;Chang, Ki-Chang
    • New & Renewable Energy
    • /
    • v.1 no.4 s.4
    • /
    • pp.30-37
    • /
    • 2005
  • Cycle simulation of Ground Source Heat Pump[GSHP] system was carried out to determine the design specification of basic components such as turbo compressor and heat exchangers. Part load operation characteristics of the designed GSHP system was estimated using the compressor and heat exchanger performance data. A 50RT class turbo compressor for GSHP system is now under development, in which R134a refrigerant is adopted as working fluid. The compressor with variable cascade diffusers is designed to work both in cooling and heating modes so that it can actively keep up with the climate change with high efficiency. The normal running speeds of the compressor are 59000rpm for heating mode and 70000rpm for tooling mode respectively. It has two identical impellers at both ends of the rotor so as to minimize aero-induced thrust force effectively. GSHP system was coupled with a vortical type heat exchanger, and heat gain and heat loss from ground were evaluated per a bore hole. For the optimal integration of the heat pump system, its header for circulating fluid was combined with the ground heat exchangers in parallel and series configuration.

  • PDF

Experimental Studies on the Performance Characteristics of Heat Exchangers of $CO_2$ Air Conditioning System for Vehicle (자동차용 $CO_2$ 에어컨 시스템 열교환기 성능 특성에 관한 실험적 연구)

  • Kim, Sung-Chul;Lee, Dong-Hyuk;Won, Jong-Phil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.146-153
    • /
    • 2009
  • The performance characteristics of heat exchangers which consist of a gas cooler, an evaporator and an internal heat exchanger have been investigated at various operating conditions of $CO_2$ air conditioning system by experiments. The heat exchangers were designed for use in the vehicle $CO_2$ air conditioning system, when considering the characteristics of heat transfer and high pressure as $CO_2$ refrigerant. This paper studied the performance of heat exchangers at various compressor speeds and expansion valve openings, and quantified the heat transfer rates and pressure drops. Heat transfer rates at the gas cooler and the evaporator were 6.9 kW and 5.2 kW, respectively, when the compressor speed was 4000 rpm and refrigerant vapor quality at the evaporator outlet was 0.98. Therefore, this paper carried out that the heat exchangers were analyzed to achieve superior performance for the vehicle transcritical $CO_2$ cycle.

An Experimental Study on Performance Improvement for Exhaust Heat Recovery Ventilation System in a Lightweight Wall (벽체매립형 폐열회수 환기시스템의 열회수 성능 향상에 관한 실험적 연구)

  • Chung, Min-Ho;Oh, Byung-Kil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.2
    • /
    • pp.61-66
    • /
    • 2014
  • Exhaust heat recovery ventilation systems conserve energy through enthalpy recovery between air intake and exhaust, and they are being increasingly used. An exhaust heat recovery ventilation system can be installed in the ceiling of a balcony or emergency evacuation space. However, in the case of fire, the emergency evacuation space has to by law remain as empty space, and therefore, a ventilation system can't be installed in an emergency evacuation space. Therefore, the need for a proper installation space for a ventilation system is emphasized. In this study, to install a heat recovery ventilation system in a lightweight wall, a heat exchanger was assembled of thickness below 140 mm. The efficiency of heat recovery was analyzed through performance experiment, in the case of the cooling and heating mode. The heat recovery efficiency increases when the surface area is increased, by using closer channel spacing in the heat exchanger, or by increasing the size of the heat exchanger.

HEAT PIPE TYPE EXHAUST HEAT RECOVERY SYSTEM FOR HOT AIR HEATER

  • Kang, G.C.;Kim, Y.J.;Ryou, Y.S.;Rhee, K.J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.654-661
    • /
    • 2000
  • Area of greenhouse increases rapidly up to 45,265ha by the year of 1998 in Korea. Hot air heater with light oil combustion is the most common heater for greenhouse heating in the winter season. However, exhaust gas heat discharged to atmosphere through chimney reaches up to 10~20% of total heat of the oil combusted in the furnace. In order to recapture the heat of this exhaust gas and to recycle for greenhouse heating, the heat pipe type exhaust heat recovery system was manufactured and tested in this experiment. The exhaust heat recovery system was made for space heating in the greenhouse. The system consisted of a heat exchanger made of heat pipes, ${\emptyset}15.88{\times}600mm$ located in the rectangular box of $600{\times}550{\times}330mm$, a blower and air ducts. The rectangular box was divided by two compartments where hot chamber exposed to exhaust gas in which heat pipes could pick up the heat of exhaust gas, and by evaporation of the heat transfer medium in the pipes it carries the heat to the cold compartment, then the blower moves the heat to greenhouse. The number of heat pipe was 60, calculated considering the heat exchange amount between flue gas and heat transfer capacity of heat pipe. The working fluid of heat pipe was acetone because acetone is known for its excellent heat transfer capacity. The system was attached to the exhaust gas path. According to the performance test it could recover 53,809 to 74,613kJ/hr depending on the inlet air temperature of 12 to $-12^{circ}C$ respectively when air flow rate $1,100\textrm{m}^3/hr$. The exhaust gas temperature left the heat exchanger dropped to $100^{circ}C$ from $270^{circ}C$ by the heat exchange between the air and the flue gas, the temperature difference was collected by the air and the warm air temperature was about $60^{circ}C$ at the air flow rate of $1,100\textrm{m}^3/hr$. This heat pipe type exhaust heat recovery system can reduce fuel cost by 10% annually according to the economic analysis.

  • PDF

Performance Characteristics of R134a Supercritical Heat Pump (R134a 냉매용 초임계 히트펌프의 성능 특성)

  • Choi, In-Soo
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.60-65
    • /
    • 2014
  • In this paper, cycle performance analysis for heating capacity, compression work and COP of R134a supercritical heat pump is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include superheating degree, pressure and outlet temperature of gas cooler, compressor efficiency and evaporating temperature in the R134a supercritical heat pump system. The main results were summarized as follows : Superheating degree, pressure and outlet temperature of gas cooler, compressor efficiency and evaporating temperature of R134a heat pump system have an effect on the heating capacity, compression work and COP of this system. With a thorough grasp of these effect, it is necessary to design the supercritical heat pump using R134a. The prediction for COP of R134a supercritical heat pump have been proposed through multiple regression analysis.

Study on the Heating Performance Characteristics of a Heat Pump System Utilizing Air and Waste Heat Source for Electric Vehicles (이중열원을 이용한 전기자동차용 히트펌프 시스템의 난방 성능 특성에 관한 연구)

  • Woo, Hyoung Suk;Ahn, Jae Hwan;Oh, Myoung Su;Kang, Hoon;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.4
    • /
    • pp.180-186
    • /
    • 2013
  • An electric vehicle is an environment-friendly automobile which does not emit any tailpipe pollutant. In a conventional vehicle with an internal combustion engine, the internal cabin of the vehicle is usually heated using waste heat from the engine. However, for an electric vehicle, an alternative solution for heating is required because it does not have a combustion engine. Recently, a heat pump system which is widely used for residential heating due to its higher efficiency has been studied for its use as a heating system in electric vehicles. In this study, a heat pump system utilizing air source and waste heat source from electric devices was investigated experimentally. The performance of the heat pump system was measured by varying the mass flow rate ratio. The experimental results show that the heating capacity and COP in the dual heat source heat pump were increased by 20.9% and 8.6%, respectively, from those of the air-source heat pump.

A Study on the Heat Rejection to Coolant in a Gasoline Engine (가솔린 엔진에서의 냉각수로의 전열량에 대한 연구)

  • 류택용;신승용;이은현;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.77-88
    • /
    • 1997
  • The heat rejection to coolant is a dominant factor for building vehicle cooling system such as radiator and cooling fan. Since the vehicle cooling system also has effects on fuel consumption and noise, the study of heat rejection to coolant has been emphasized. However, the study on heat rejection to coolant has been mainly focused on the field that related to the characteristics of combustion and localized heat loss. It is no much of use in design for the entire cooling system because it is focused on such a specific point. In this work, the heat rejection rate to coolant for four different engines are obtained to derive a simple heat transfer empirical formula that can be applied to the engine cooling system design, and it is compared with the other studies. Also, to observe effects of engine operation factors and heat transfer factors on coolant, we measured the metal temperature and the heat rejection rate. The heat rejection to coolant does not depend significantly upon the coolant flowrate, but mainly upon the amount of air fuel mixture and the air fuel ratio as long as the composition of coolant does not change. The reduction of heat rejection to coolant did not effectively improve the fuel consumption, but was mostly converted to raise the exhaust gas temperature and the oil temperature.

  • PDF