• 제목/요약/키워드: heat strain

검색결과 1,006건 처리시간 0.03초

Saccharomyces cerevisiae KNU5377 with Multiple Stress Tolerance and its Potential as a Worldwide On-site Industrial Strain for Alcohol Fermentation

  • Paik, Sang-Kyoo;Ingnyol Jin;Yun, Hae-Sun;Park, Sae-Hun;Shin, Seong-Chul;Kim, Jae-Wan;Shin, Ki-Sun;Lee, Jung-Sook;Park, Yong-Ha
    • 한국미생물·생명공학회지
    • /
    • 제30권4호
    • /
    • pp.425-429
    • /
    • 2002
  • Saccharomyces cerevisiae KNU5377 was examined to assay the recovering capacity against heat and other stressors. Along with a particular fermentation ability that is able to produce ethanol even at high temperature such as $40^{\circ}C$ with a comparable rate to the fermentation at $33^{\circ}C$, this strain also exhibited higher viability than a reference strain owing to its own thermotolerance that conferred the survival after the severe heat shock at $60^{\circ}C$ for 30 minutes. Furthermore, this strain showed outstanding tolerances against $H_2O_2$, ethanol and some chemical compounds. But, especially due to the thermotolerance, this strain has been suspected of other species of yeast. However, ITS (internally transcribed spacer) 1 and 2 sequencing data confirmed this strain was a typical strain of S. cerevisiae. The outstanding tolerances to various environmental stressors Indicate this S. cerevisiae KNU5377 is enough to use both as an on-site potential strain for world-wide alcohol fermentation industry and as a model strain for researches into the routes to acquire the tolerance to various stressors.

내열강 용접부의 크리프 평가 신기술 개발에 관한 연구 (A Study of New Technique Development for Creep Evaluation of Heat Resistant Steel Weldment(I))

  • 유효선;백승세;권일현;이송인
    • Journal of Welding and Joining
    • /
    • 제20권6호
    • /
    • pp.30-30
    • /
    • 2002
  • It has been reported that the creep characteristics on weldment which is composed of weld metal(W.M), fusion line(F.L), heat-affected zone(HAZ), and base meta(B.M) could be unpredictably changed in severe service conditions such as high temperature and high pressure. However, the studies done on creep damage in power plant components have been mostly conducted on B.M and not the creep properties of the localized microstructures in weldment have been thoroughly investigated yet. In this paper, it is investigated the creep characteristics for three microstructures like coarse-grain HAZ(CGHAZ), W.M, and B.M in X20CrMoV121 steel weldment by the small punch-creep-(SP-Creep) test using miniaturized specimen(l0×10×0.5mm). The W.M microstructure possesses the higher creep resistance and shows lower creep strain rate than the B.M and CGHAZ. In the lower creep load the highest creep strain rate is exhibited in CGHAZ, whereas in the higher creep load the B.M represents the high creep strain rate. The power law correlation for all microstructures exists between creep rate and creep load at 600℃. The values of creep load index (n) based on creep strain rate for B.M, CGHAZ, and W.M are 7.54, 4.23, and 5.06, respectively and CGHAZ which shows coarse grains owing to high welding heat has the lowest creep loade index. In all creep loads, the creep life for W.M shows the highest value.

내열강 용접부의 크리프 평가 신기술 개발에 관한 연구(I) (A Study on New Technique Development for Creep Evaluation of Heat Resistant Steel Weldment (I))

  • 유효선;백승세;권일현;이송인
    • Journal of Welding and Joining
    • /
    • 제20권6호
    • /
    • pp.754-761
    • /
    • 2002
  • It has been reported that the creep characteristics on weldment which is composed of weld metal(W.M), fusion line(F.L), heat-affected zone(HAZ), and base meta(B.M) could be unpredictably changed in severe service conditions such as high temperature and high pressure. However, the studies done on creep damage in power plant components have been mostly conducted on B.M and not the creep properties of the localized microstructures in weldment have been thoroughly investigated yet. In this paper, it is investigated the creep characteristics for three microstructures like coarse-grain HAZ(CGHAZ), W.M, and B.M in X20CrMoV121 steel weldment by the small punch-creep-(SP-Creep) test using miniaturized specimen($10{\times}10{\times}0.5mm$). The W.M microstructure possesses the higher creep resistance and shows lower creep strain rate than the B.M and CGHAZ. In the lower creep load the highest creep strain rate is exhibited in CGHAZ, whereas in the higher creep load the B.M represents the high creep strain rate. The power law correlation for all microstructures exists between creep rate and creep load at $600^{\circ}C$. The values of creep load index (n) based on creep strain rate for B.M, CGHAZ, and W.M are 7.54, 4.23, and 5.06, respectively and CGHAZ which shows coarse grains owing to high welding heat has the lowest creep loade index. In all creep loads, the creep life for W.M shows the highest value.

저항점용접(抵抗點熔接)에 따른 과도적(過渡的) 냉각(冷却) 온도이력(溫度履歷) (Transient Temperature Drstributions in a Adiabatic Plate Due to Resistance Spot Welding)

  • 김효철
    • 대한조선학회지
    • /
    • 제9권1호
    • /
    • pp.15-20
    • /
    • 1972
  • As the technique of resistance spot welding became more and more advanced the factors hitherto considered secondary become more and more important. Among these factors the distribution of heat and temperature during resistance spot welding is particularly important in conjunction with thermal stress, strain and residual stress, strain problems. The analytical investigations upon the transient temperature due to resistance spot welding were made for the carbon steel plate and aluminum alloy plate. The numerical values obtained by the analytical investigation are nearly identical with the temperature distribution which obtained by D.J. Sullivan and some other experimental data. It was thought therefore useful to estimate the heat effect upon the material such as a residual stress and strain, metalurgical change, change in physical properties and etc.

  • PDF

Ni-Cr-Mo-V강의 템퍼링에 의한 미세구조 변화와 하한계 피로균열진전 특성 (Microstructual Change and Near-threshold Fatigue Crack Growth Behaviors of Ni-Cr-Mo-V Steel by Tempering Treatments)

  • 신훈;문윤배;김상태;권재도
    • 열처리공학회지
    • /
    • 제10권4호
    • /
    • pp.266-277
    • /
    • 1997
  • Near-threshold fatigue crack growth characteristics was investigated on the Ni-Cr-Mo-V low alloy steel, which has the different microstructure obtained by tempering at various temperature. The specimens were austenized at $950^{\circ}C$ and then followed by tempering at $200^{\circ}C$, $530^{\circ}C$ and $600^{\circ}C$. Strain rate was obtained from strain gauge attached on the crack tip and crack opening point was observed through load-strain curve. Threshold stress intensity range(${\Delta}K_{th}$) was increased with increasing tempering tempuerature, but the effective threshold stress intensity rage (${\Delta}K_{eff,\;th}$) was not affected with the increasing temperature. Grain size increased with increasing tempering temperature.

  • PDF

AZ31B 마그네슘 합금의 인장특성 및 이방성의 실험적 연구 (An Experimental Study on Anisotropic Tensile Properties of AZ31 Mg Alloy)

  • 김세호;이형욱;이근안;김경태;최석우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.254-257
    • /
    • 2007
  • In this paper, anisotropic tensile properties of the AZ31B Mg-alloy sheet are obtained with the tensile test at elevated temperatures. Change of microscopic structures and the hardness is inspected after the solution heat treatment process in order to confirm the micro-structural stability of the used sheet metal. Results obtained from tensile tests show that it is very difficult to apply the conventional modeling scheme with the assumption of strain hardening to the forming analysis of the magnesium alloy sheet which shows the strain-softening behavior at the elevated temperature.

  • PDF

고유변형도 기반 등가하중법에 의한 보강판의 가열 교정 해석 (Analysis of Correction of Welding Deformation of Stiffened Plate by Heating Using Equivalent Loading Method based on Inherent Strain)

  • 송하철;류현수;장창두
    • 대한조선학회논문집
    • /
    • 제41권4호
    • /
    • pp.85-91
    • /
    • 2004
  • The objective of the present paper is to develop an analysis method for the correction of welding deformation of stiffened plate by line heating. In this paper, the equivalent loading method, based on the inherent strain theory, was used to analyze the heat-straightening of a stiffened plate. Equivalent loads were obtained by integrating the inherent strains which were determined from the highest temperature and the degree of restraint. Finally, the obtained equivalent loads were imposed, as applied loads, on the elastic analysis for the prediction of correction of welding deformation in stiffened plate. The proposed method is expected as a basic study in heat-straightening analysis of welding deformation in large scale block.

고온변형 중의 AZ80 마그네슘합금의 집합조직 형성거동에 영향을 미치는 변형속도의 영향 (The Effect of Strain Rate on Texure Formation Behaviors in AZ80 Magnesium Alloy)

  • 배상대
    • 열처리공학회지
    • /
    • 제33권6호
    • /
    • pp.296-302
    • /
    • 2020
  • Magnesium alloys have been rapidly attracting as lightweight structural material in various industry fields because of having high specific strength and low density. It is well known that the crystallographic texture plays an important role in improvement of poor room temperature ductility of magnesium alloys. In this study, high-temperature plane strain compression deformation was conducted on extruded AZ80 magnesium alloy at 723K by varying the strain rates ranging from 5.0×10-3s-1 to 5.0×10-2s-1 in order to investigate the behaviors of texture formation. It was found that texture formation behaviors in three kinds of specimens were affected by continuous and discontiuous deformation mechanism.

변형속도에 따른 M1 마그네슘 합금의 고온변형 중 미세조직 형성 거동 (Effect of Strain Rate on Microstructure Formation Behavior of M1 Magnesium Alloy During High-temperature Deformation)

  • 이규정;김권후
    • 열처리공학회지
    • /
    • 제32권1호
    • /
    • pp.1-11
    • /
    • 2019
  • In this study, microstructure evolution and crystallographic orientation are investigated under various deformation conditions in M1 magnesium alloy. M1 magnesium ingot was rolled at 673 K with the rolling reduction of 30%. The compression test specimens were machined out from rolled plate, and then the specimens were annealed at 823 K for 1h. Uniaxial compression tests were conducted at 723 K and under the strain rate ranging from $5.0{\times}10^{-4}s^{-1}$ to $5.0{\times}10^{-2}s^{-1}$ up to a true strain of -1.0. For observation of crystal orientation distribution, EBSD measurement was performed. Occurrence of the dynamic recrystallization and grain boundary migration were confirmed in all case of the specimens. The distribution of the grains is not uniformed in the experimental conditions.

Effect of Heat Treatment Conditions on Corrosion and Hydrogen Diffusion Behaviors of Ultra-Strong Steel Used for Automotive Applications

  • Park, Jin-seong;Seong, Hwan Goo;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • 제18권6호
    • /
    • pp.267-276
    • /
    • 2019
  • The purpose of this study was to examine the influence of conditions for quenching and/or tempering on the corrosion and hydrogen diffusion behavior of ultra-strong automotive steel in terms of the localized plastic strain related to the dislocation density, and the precipitation of iron carbide. In this study, a range of analytical and experimental methods were deployed, such as field emission-scanning electron microscopy, electron back scatter diffraction, electrochemical permeation technique, slow-strain rate test (SSRT), and electrochemical polarization test. The results showed that the hydrogen diffusion parameters involving the diffusion kinetics and hydrogen solubility, obtained from the permeation experiment, could not be directly indicative of the resistance to hydrogen embrittlement (HE) occurring under the condition with low hydrogen concentration. The SSRT results showed that the partitioning process, leading to decrease in localized plastic strain and dislocation density in the sample, results in a high resistance to HE-induced by aqueous corrosion. Conversely, coarse iron carbide, precipitated during heat treatment, weakened the long-term corrosion resistance. This can also be a controlling factor for the development of ultra-strong steel with superior corrosion and HE resistance.