• Title/Summary/Keyword: heat softening

Search Result 199, Processing Time 0.027 seconds

Study on Fracture Toughness and Heat Input in Weld HAZ of Cr-Mo Steel (I) (welding structure) (Cr-Mo강 용접열영향부의 파괴인성과 용접입열량에 관한 연구(I) (HAZ 고유조직을 중심으로))

  • 임재규;정세희
    • Journal of Welding and Joining
    • /
    • v.2 no.2
    • /
    • pp.54-61
    • /
    • 1984
  • Construction of welding structure is greatly dependent upon welding heat cycle. Fracture toughness is decreased remarkablely due to coarse grained HAZ and inequal residual stress of three dimensions to originate in welding. Post weld heat treatment(PWHT) is carried out to increase the fracture toughness of HAZ and to remove the residual stress. There occur some problem such as toughness decrement and stress relief cracking(SRC) in the coarse grained HAZ subject to the effect of tempering treatment. Therefore, in this paper, the effect of heat inputs affecting cooling rate and PWHT under the no stress on fracture toughness were evaluated by crack opening displacement (COD), SEM and micro-hardness test. Experimental results are as follows; 1. Fracture toughness of weld HAZ is dependent upon weld heat cycle and it is decreased with increment of heat input, but the degree of improvement of fracture toughness after PWHT was linearly increased with heat input. 2. Hardness of the parent metal is not changed, but the softening of coarse grained HAZ is remarkable due to PWHT. 3. Fracture surface of as-weld show the perfect brittle fracture with the cleavage fracture, but after PWHT they appear the ductile fracture surface with dimple.

  • PDF

Influence of Heat Treatment on Brazing Characteristics between Cemented Carbides and Steel (초경합금과 강의 Brazing특성에 미치는 열처리의 영향)

  • Kim Ha Young;Nakamura Mitsuru;Lee Sang Hak
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.43-45
    • /
    • 2004
  • Brazing between cemented carbides and steel for tool investigated by copper alloy brazing filler. Copper alloy filler was high liquidus temperature($990^{\circ}C$), therefor the shank(steel) occurred softening. Because brazing sample was necessary to heat treatment after brazing process. This experiment, influence of austenite time and purge temperature on heat treatment were investigated. As a result, these treatments obtained to high deflective strength In case of austenite time was short and purge temperature was low. Especially, nitride precipitated brazing layers was strongly influenced by the deflective strength.

  • PDF

Combustive Properties of Ethylene-Propylene Die Monomer/Polypropylene/Clay Nanocomposites (에틸렌-프로필렌 디엔 단량체/폴리프로필렌/클레이 나노복합체의 연소성)

  • Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.190-195
    • /
    • 2011
  • Effects of ethylene-propylene diene monomer (EPDM)/polypropylene (PP), zinc oxide, stearic acid, and clay on the combustive properties based on EPDM/PP were investigated. The EPDM/PP/clay nanocomposites was compounded to prepare specimen for combustive analysis by cone calorimeter (ISO 5660-1). It was found that the combustive properties in the nanocomposites decreased due to the fire resistance compared with unfilld EDPM/PP. The nanocomposites showed the lower peak heat release rate (PHRR) than that of virgin EPDM/PP, while stearic acid for softening ruber increased the mean heat release rate (MHRR) by itself, combustible.

Expansion Characteristics of the Hydrated Sodium Silicate (수화된 규산소다의 팽창 특성)

  • Kong, Yang-Pyo;Cho, Ho-Yeon;Suhr, Dong-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.54-59
    • /
    • 2008
  • Hydrated sodium silicate with 25 wt% water contents was synthesized by hydrothermal reaction using anhydrous sodium silicate. The hydrated sodium silicate was expanded at $370^{\circ}C$ for 30 min. and then pulverized, classified (- 200 mesh) and press-formed. The samples were heat treated at $400{\sim}900^{\circ}C$ for 30 min. in order to study the expansion characteristics depending on heat treatment temperature. A porous body with closed pore was formed above $600^{\circ}C$. The volume expansion ratio and the pore size were increased and the specific gravity was decreased with increasing heat treatment temperature. However, the volume expansion ratio was decreased and the specific gravity was increased above $850^{\circ}C$ due to the softening of the sodium silicate.

The Effect of Heat Treatment on the Fatigue Crack Propagation in SM40C Steel (SM40C 강의 열처리가 피로균열전파속도에 미치는 영향)

  • Keum, C.H.;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.2
    • /
    • pp.37-44
    • /
    • 1990
  • The effect of the microstructural change on the near threshold fatigue crack growth rate in SM40C steel has been studied using the ${\Delta}K$ decreasing method. Below the total strain amplitude of 0.56%, cyclic softening occured, whereas above this value cyclic hardening occurred in the pearlitic lamellar structure. However, in the spherodized structure the cyclic hardening solely occurred. The crack growth rate in the near-threshold region was decreased with increasing prior austenite grain size and this was due to surface roughness. The crack growth rate of the spherodized structure was lower than that of the pearlite lamellar structure and the ${\Delta}K_{th}$ of the former was higher than that of the latter. It was understood that the crack propagates preferentially through the ferrite phase. The intergranular facets in the near-threshold region appeared in the spherodized structure.

  • PDF

The Effect of the Heat Treatment Conditions on the Strength and Microstructure in the Bonded Interface in Dissimilar Metal and Aluminum Alloy (AL합금과 이종금속의 접합계면에서의 미세조직과 접합강도에 미치는 열처리조건의 영향)

  • Kim, Ick-Soo;Choi, Byung-Young;Kang, Chang-Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.1
    • /
    • pp.2-9
    • /
    • 2003
  • The aluminum alloy which is light and has excellent thermal conductivity and iron base alloy that is remarkable heat-resistece and wear resistence properties were bonded together. The bond was created between a stationary and a rotating member by using the frictional heat generated between them while subjected to high normal forces on the interface of Al alloy and iron base alloy. The microstructure of the bonded interface of friction welding and the strength in the bonded interface formed under various bonding conditions were examined through TEM, SEM with EDX and triple bending test. In interface of bonding materials formed after various heat treatment, bonding strength was substantially different, resulting from formation of intermetallic compound or softening during annealing.

Evaluation of Thermal Characteristics for Warm Forging Die due to Lubricants and Surface Treatments (윤활제와 표면처리에 따른 온간단조 금형의 열적특성 평가)

  • 김종호;김동진;정덕진;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.833-836
    • /
    • 2000
  • The mechanical and thermal load. and thermal softening which is happened by the high temperature of die, in hot and warm forging, cause wear. heat checking and plastic deformation, etc. This study is for the effects of solid lubricants and surface treatments for warm forging die Because cooling effect and low friction are essential to the long lift of dies. optimal surface treatments and lubricants are very important to hot and warm forging Process. The heat that is generated by repeated forging processes. and its transfer are important factors to affect die life. The main factors, which affect die hardness and heat transfer, are surface treatments and lubricants, which are related to thermal diffusion coefficient and heat transfer coefficient, etc. For verifying these. experiments art performed for diffusion coefficient and heat transfer coefficient in various conditions - different initial billet temperatures and different loads. Carbonitriding and ionitriding are used as surface treatments. and oil- base and water-base graphite lubrirants are used. The effects of lubricant and surface treatment for warm forging die lift are explained by their thermal characteristics.

  • PDF

Integrated fire dynamic and thermomechanical modeling of a bridge under fire

  • Choi, Joonho;Haj-Ali, Rami;Kim, Hee Sun
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.815-829
    • /
    • 2012
  • This paper proposes a nonlinear computational modeling approach for the behaviors of structural systems subjected to fire. The proposed modeling approach consists of fire dynamics analysis, nonlinear transient-heat transfer analysis for predicting thermal distributions, and thermomechanical analysis for structural behaviors. For concretes, transient heat formulations are written considering temperature dependent heat conduction and specific heat capacity and included within the thermomechanical analyses. Also, temperature dependent stress-strain behaviors including compression hardening and tension softening effects are implemented within the analyses. The proposed modeling technique for transient heat and thermomechanical analyses is first validated with experimental data of reinforced concrete (RC) beams subjected to high temperatures, and then applied to a bridge model. The bridge model is generated to simulate the fire incident occurred by a gas truck on April 29, 2007 in Oakland California, USA. From the simulation, not only temperature distributions and deformations of the bridge can be found, but critical locations and time frame where collapse occurs can be predicted. The analytical results from the simulation are qualitatively compared with the real incident and show good agreements.

Thermal Analysis for Laser Assisted Turning of Square Bar using Laser Heat Source Projection Method (사각형재의 레이저 예열 선삭에서 레이저 열원 투영법을 이용한 열해석)

  • Kim, Jae-Hyun;Choi, Jun-Young;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.12
    • /
    • pp.1353-1358
    • /
    • 2011
  • LAT(Laser Assisted Turning) is a method that applies a machining process after softening a workpiece in which a preheating process is locally applied to its machining section using laser heat source. LAT shows several advantages, such as high productivity, reduction of manufacturing cost, high quality. Analysis of temperature distribution after preheating for LAT is very difficult due to its very small heat input area and large energy and its movement. Also, the LAT for a square bar is more difficult because the shape of a laser heat source can be changed according to the rotation of the workpiece. In this study, thermal analysis for LAT of square bar was performed using laser heat source projection method. And, the analysis results were compared with the results of the prior study of numerical calculation method. It is thus shown that the proposed method is efficient for the thermal analysis of a shaped bar.

Pre-treatment effects on softening of carrot during enzyme immersion process (당근의 전처리 조건에 따른 효소의 연화 효과 비교)

  • Kim, Se-rin;Kim, Sun-min;Chang, Jin-Hee;Han, Jung-Ah
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.292-296
    • /
    • 2018
  • Softening effects of enzyme following pre-treatments were examined. Four pre-treatments: raw (R), heat (H), heat and freeze-thawing (HFT), heat and freeze-drying (HFD) were applied to carrot. Subsequently, each treated sample was immersed in 10% celluclast enzyme solution for up to 6 h and then their properties were compared. The minimum and the maximum color change was observed in HFD and H, respectively. R showed no change in hardness after 6 h immersion, indicating that the enzyme did not penetrate the carrot. The number and size of pores were greater in samples undergone HFT or HFD as observed by microstructure analysis using SEM, and HFD caused 99.5% reduction in hardness after 6 h immersion. After 6 h immersion post-HFT or 3 h immersion post-HFD, the hardness was less than $20,000N/m^2$, indicating tongue ingestion was possible, and the samples retained their original shape and easily collapsed by spoon pressing.