• Title/Summary/Keyword: heat softening

Search Result 199, Processing Time 0.031 seconds

A Study on the Fire Prevention Activities and Suppression Measures of Utility-Pipe Conduit (지하공동구 화재예방활동 및 진압대책에 관한 연구)

  • Lee, Jung-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.63-68
    • /
    • 2010
  • Utility-Pipe Conduit is, Housing and city effectively accommodate what they absolutely need power, communications, gas, pipeline, water supply, drainage, energy facilities etc, according to expansion of urban infrastructure are derived, several ways to solve problems in, collection facilities in place are maintained and managed facility. If Utility-Pipe Conduit is damaged, as well as national security, because their impact on society as a whole, by introducing large vulnerability in the fire prevention activities and suppression measures and disaster for our situation by introducing measures, comprehensive analysis of the fire risk, it shall establish fire prevention activities and suppression through analysis of Utility-Pipe Conduit design, institutional issues, the problem of fire protection facilities, fire spread phenomenon etc. Because of Utility-Pipe Conduit is an enclosed place, so incomplete combustion due to lack of oxygen supply that there are problem such dark smoke, carbon monoxide etc, toxic combustion products and heat generation and visual impairment is an issue difficult to enter. As well as fire prevention activities, the fire In light of the particularity of the under ground than above ground fire, so this phenomenon is weak fire fighting that fire to become effective fire fighting tactics, basically it is necessary difficulty softening, non-burn softening and prevent combustion expansion of the cable is installed on the Utility-Pipe Conduit, having to considering the specificity of the response command system and relevant organizations to establish an on-site, Structural identification and other information gathering required to record of Response agencies, keep air conditioning system 24 hours and strengthening Virtual Total Training of Response agen

Effect of cooling rate control on the change in hardness of the multi-purpose Ag-Pd-Zn-In-Sn alloy during porcelain firing simulation and post-firing heat treatment (다목적용 Ag-Pd-Zn-In-Sn계 합금의 모의소성 시 냉각속도의 조절이 소성 및 후열처리에 따른 경도변화에 미치는 영향)

  • Shin, Hye-Jeong;Kim, Min-Jung;Kwon, Yong-Hoon;Kim, Hyung-Il;Seol, Hyo-Joung
    • Korean Journal of Dental Materials
    • /
    • v.44 no.4
    • /
    • pp.337-348
    • /
    • 2017
  • In this study, the effect of cooling rate control on the change in hardness of the multi-purpose Ag-Pd-Zn-In-Sn alloy during porcelain firing simulation and post-firing heat treatment was investigated, and the following results were obtained. Softening of the multi-purpose Ag-Pd-Zn-In-Sn alloy during porcelain firing simulation was suppressed by controlling the cooling rate. When the cooling rate was adjusted to stage 0(firing chamber moves immediately to upper end position), the alloy was softened during porcelain firing simulation, and the hardness was greatly increased by the additional post-firing heat treatment. When the cooling rate was adjusted to stage 3(firing chamber remains closed), the alloy was not softened even after porcelain firing simulation, and the hardness was apparently lowered by the additional post-firing heat treatment. The apparent increase in hardness in the post-firing heat treated alloy after porcelain firing simulation at cooling rate of stage 0 attributed to the active precipitation. The apparent decrease in hardness in the post-firing heat treated alloy after porcelain firing simulation at cooling rate of stage 3 attributed to the fact that the precipitates were solutionized into the matrix by the post-firing heat treatment.

Interaction Between Transparent Dielectric of Bi2O3-B2O3-BaO-ZnO Glass and Ag Electrode (Bi2O3-B2O3-BaO-ZnO계 투명유전체와 Ag 전극의 반응)

  • An, Yong-Tae;Choi, Byung-Hyun;Kim, Hyung-Sun
    • Korean Journal of Materials Research
    • /
    • v.18 no.12
    • /
    • pp.678-682
    • /
    • 2008
  • This study investigates $Bi_2O_3$-$B_2O_3$-BaO-ZnO glass with variations of the $Co_3O_4$ content (0.25, 0.5, 1, and 2 wt%) and the interaction between transparent dielectric and Ag electrodes heat-treated at $500-560^{\circ}C$ for 30 min. The glass transition temperature, softening temperature and thermal expansion coefficient were $432^{\circ}C$, $460^{\circ}C$ and $81.4{\times}10^{-7}/^{\circ}C$, respectively. The transmittance of 0.25 wt% $Co_3O_4$ to which dielectric was added was highest and was decreased due to coloration with the addition of more than 0.25 wt%. However, without $Co_3O_4$, the transmittance of the transparent layer was decreased due to the formation of $Ba_5Bi_3$; however, the occurrence of the crystal phase decreased as a result of the addition of $Co_3O_4$. The amount of $Co^{2+}$ ions increased as the $Co_3O_4$ increased. With a maximum of $Co^{3+}$ ions, the highest transmittance was observed.

Characteristics of Opal Glass by Calcium Phosphate Opacifier for a LED Light Diffuser (Calcium Phosphate 유백제 투입량에 따른 LED Diffuser용 유백유리의 특성)

  • Ku, Hyun-Woo;Lim, Tae-Young;Hwang, Jonghee;Kim, Jin-Ho;Lee, Mi-Jai;Shin, Dong Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.75-81
    • /
    • 2013
  • We fabricated translucent opal glass to replace the polycarbonate diffuser in LED lighting systems in order to solve the durability problem. Batch materials of opal glass with a composition of calcium phosphate were created and melted at $1550^{\circ}C$, and the effect of opaqueness was identified by an addition of 1~7% calcium phosphate as an opacifier raw material. As a result, translucent opal glass was obtained by the melting of the mixed batch materials with a composition of more than 5% calcium phosphate glass at $1550^{\circ}C$ for 2 hrs, which had excellent optical properties for the diffuser of a LED lighting system with no dazzling from direct light by a high haze value exceeding 90% and a low parallel transmittance value of about 5%. For the thermal properties, the thermal expansion coefficient was found to be $5.6{\sim}5.9{\times}10^{-6}/^{\circ}C$ and the softening point was $874{\sim}884^{\circ}C$. In addition, good thermal properties such as good thermal shock resistance and feasibility for use with a general manufacturing process during the forming of glass tubes and bulbs were noted. Therefore, it is concluded that this translucent opal glass can be used as a glass diffuser material for LED lighting due to its high heat resistance and high durability as a replacement for a polycarbonate diffuser.

Development and Characterization of Translucent Opal Glass for Diffuser of LED Lighting (LED 조명용 반투명 유백유리 Diffuser 조성 개발 및 특성)

  • Ku, Hyun-Woo;Lim, Tae-Young;Hwang, Jonghee;Kim, Jin-Ho;Lee, Mi-Jai;Shin, Dong Wook
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.650-657
    • /
    • 2012
  • For the purpose of improving the durability problem, translucent opal glass was fabricated as a substitute for the polycarbonate diffuser of LED lighting. Calcium phosphate was used as an opacifier of opal glass and melted in an electric furnace. The opaque effect was identified according to the change of the cooling procedure. As results, translucent opal glass was obtained by the melting of a batch with a composition of 3.8% calcium phosphate at $1550^{\circ}C$ for 2 hrs and then the cooling of the material in the furnace. For the cooling condition of the glass sample, HTCG (High Temperature Cooled Glass) was found to have better optical properties than LTAG (Low Temperature Annealed Glass). It had excellent optical properties for a diffuser of LED lighting, with no dazzling from direct light due to its high haze value of over 99% and low parallel transmittance value of under 1%. For the thermal properties, it had an expressed thermal expansion coefficient of $5.7{\times}10^{-6}/^{\circ}C$ and a softening point of $876^{\circ}C$; it also had good thermal properties such as good thermal shock resistance and was easy to apply to the general manufacturing process in the forming of glass tubes and bulbs. Therefore, it is concluded that this translucent opal glass can be used as a glass diffuser material for LED lighting with high heat resistance and high durability; this material is suitable as a substitute for polycarbonate diffusers.

Electro-deposition and Crystallization Behaviors of Cr-C and Cr-C-P Alloy Deposits Prepared by Trivalent Chromium Sulfate Bath (황화물계 3가 크롬도금욕에서 크롬-탄소 및 크롬-탄소-인 합금도금의 전착과 결정화거동)

  • Kim, Man;Kim, Dae-Young;Park, Sang-Eon;Kwon, Sik-Chul;Choi, Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.2
    • /
    • pp.80-85
    • /
    • 2004
  • Chromium-carbon (Cr-C) and chromium-carbon-phosphorus (Cr-C-P) alloy deposits using trivalent chromium sulfate baths containing potassium formate were prepared to study their current efficiency, hardness change and phase transformations behavior with heat treatment, respectively. The current efficiencies of Cr-C and Cr-C-P alloy deposits increase with increasing current density in the range of 15-35 A/dm$^2$. Carbon content of Cr-C and phosphorous of Cr-C-P layers decreases with increasing current density, whereas, the carbon content of Cr-C-P layer is almost constant with the current density. Cr-C deposit shows crystallization at $400^{\circ}C$ and has (Cr+Cr$_{ 23}$$C_{6}$) phases at $800^{\circ}C$. Cr-C-P deposit shows crystallization at $600^{\circ}C$ and has (Cr+Cr$_{23}$ $C_{6}$$+Cr_3$P) phases at $800^{\circ}C$. The hardness of Cr-C and Cr-C-P deposits after heating treatment for one hour increase up to Hv 1640 and Hv 1540 and decrease about Hv 820 and Hv 1270 with increasing annealing temperature in the range of $400~^{\circ}C$, respectively. The hardness change with annealing is due to the order of occurring of chromium crystallization, precipitation hardening effect, softening and grain growth with temperature. Less decrease of hardness of Cr-C-P deposit after annealing above $700^{\circ}C$ is related to continuous precipitation of $Cr_{23}$ $C_{6}$ and $Cr_3$P phases which retard grain growth at the temperature.

Pitch-based carbon fibers from coal tar or petroleum residue under the same processing condition

  • Kim, Jiyoung;Im, Ui-Su;Lee, Byungrok;Peck, Dong-Hyun;Yoon, Seong-Ho;Jung, Doo-Hwan
    • Carbon letters
    • /
    • v.19
    • /
    • pp.72-78
    • /
    • 2016
  • Spinnable pitches and carbon fibers were successfully prepared from petroleum or coal pyrolysis residues. After pyrolysis fuel oil (PFO), slurry oil, and coal tar were simply filtered to eliminate the solid impurities, the characteristics of the raw materials were evaluated by elemental analysis, 13C nuclear magnetic resonance spectrometer, matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF-MS), and so on. Spinnable pitches were prepared for melt-spinning carbon fiber through a simple distillation under strong nitrogen flow, and further vacuum distillation to obtain a high softening point. Carbon fibers were produced from the above pitches by single-hole melt spinning and additional heat treatment, for oxidization and carbonization. Even though spinnable pitches and carbon fibers were processed under the same conditions, the melt-spinning and properties of the carbon fiber were different depending on the raw materials. A fine carbon fiber could not be prepared from slurry oil, and the different diameter carbon fibers were produced from the PFO and coal tar pitch. These results seem to be closely correlated with the initial characteristics of the raw materials, under this simple processing condition.

Development of Hi-Quality Bedding Items by Multi-Finishing System of Pile Knitted Fabrics - Physical Properties of Textile according to Yarn Types - (파일 니트의 복합 후가공 기술에 의한 고품위 침장제품 개발에 관한 연구 - 원사 종류에 따른 원단의 물리적 특성 고찰을 중심으로 -)

  • Son, Eun Jong;Hwang, Young Gu;Park, Shin Woong;Choi, Yun Seon;Jeong, Sung Hoon
    • Textile Coloration and Finishing
    • /
    • v.29 no.4
    • /
    • pp.231-238
    • /
    • 2017
  • There are many kinds of elements and processes for the development of high quality bedding products like fiber, high-temperature heat treatment, dyeing process, tenter drying with softening agent and multiple final finishing. Especially we examined the mechanical characteristic properties of fabrics according to different yarn types. The critical physical properties of the yarn consisting the pile knitted fabrics were obtained for the development of the hi-grade bedding items. The material property and the exhaustion behaviour of the developed pile knitted fabrics composing of different yarns were measured and observed. The physical properties of the developed fabric were evaluated through the material property analysis of the yarn, the physical nature of the pile knitted fabrics and the data of the exhaustion performance; tensile strength, tensile elongation, tearing strength, cross section of yarn types, dyeing properties etc. And then high-class of bedding items were knitted using the double raschel machine to make the pile knitted fabrics.

A Study for Joining of Silicon Nitride with Crystallized Glass Solder of $SiO_2-Al_2O_3-MgO$ System ($SiO_2-Al_2O_3-MgO$계 결정화 유리 솔더에 의한 질화규소의 접합에 관한 연구)

  • 안병국
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.107-113
    • /
    • 2003
  • Joining of $Si_3N_4$ to $Si_3N_4$ with crystallized glass solder was studied. $SiO_2-Al_2O_3-MgO$ glass with $P_2O_5$ as a crystallizing reagent was used as a solder. To improve the hish temperature toughness of joined specimen, two stage heat treatment was applied to Joined sample for the crystallization of joined layer, Two factors, i.e. thickness of soldered layer and crystallization were taken and thier effects on joining strength were investigated by a SEM-EDX observation of joined interface and bending strength both at room and elevated temperatures. Obtained results are summarized as follows: (1) Nitrogen diffused from $Si_3N_4$ to solder during the Joining process. Average amount of nitrogen in soldered layer depended on the thickness of the soldered layer and increased with decrease of the thickness. (2) Joining strength of the specimen having a thinner soldered layer was stronger than that of thicker layer. This can be mainly attributed to the difference of the nitrogen content in the soldered layer. (3) Higher content of nitrogen in solder brought forth higher viscosity of the solder. Hence the crystallization of the solder become more difficult in thinner layer of the solder than thicker one. (4) Thus, the effect of crystallization was evaluated mostly by the thicker layer specimen. Crystallization of soldered layer improved markedly the fracure strength of joining at higher temperatures than the softening temperature of glass solder.

The Figures for the Alstom Power Pressurized Fluidized Bed Combustion Combined Cycle System (Alstom Power의 가압유동층 복합발전 시스템 특성)

  • 이윤경;주용진;김종진
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • Pressurized fluidized bed combustion unit is operated at pressures of 1~1.5 MPa with combustion temperatures of 850~87$0^{\circ}C$. The pressurized coal combustion system heats steam, in conventional heat transfer tubing, and produces a hot gas supplied to a gas turbine. Gas cleaning is a vital aspect of the system, as is the ability of the turbine to cope with some residual solids. The need to pressurize the feed coal, limestone and combustion air, and to depressurize the flue gases and the ash removal system introduces some significant operating complications. The proportion of power coming from the steam : gas turbines is approximately 80:20%. Pressurized fluidized bed combustion and generation by the combined cycle route involves unique control considerations, as the combustor and gas turbine have to be properly matched through the whole operating range. The gas turbines are rather special, in that the maximum gas temperature available from the FBC is limited by ash fusion characteristics. As no ash softening should take place, the maximum gas temperature is around 90$0^{\circ}C$. As a result a high pressure ratio gas turbine with compression intercooling is used. This is to offset the effects of the relatively low temperature at the turbine inlet.