• Title/Summary/Keyword: heat shrinkage

Search Result 376, Processing Time 0.022 seconds

Properties of Inorganic Adhesives according to Phosphate Type and Borax Ratio (인산염 종류와 붕사 첨가율에 따른 무기접착재의 특성)

  • Song, Ha-Young;Lim, Jeong-Jun;Khil, Bae-Su;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.4
    • /
    • pp.289-297
    • /
    • 2019
  • Epoxy resin adhesives are currently used as adhesives in buildings. Epoxy resin adhesives, which are organic materials, generate harmful substances when producing adhesives, and toxic substances are high in the residential space after installation. In addition, a large amount of carbon monoxide generated from organic materials in the case of a building fire leads to personal injury. This study evaluates the feasibility of inorganic adhesives using pure inorganic materials such as magnesia, phosphate, and borax as inorganic adhesives to replace existing organic adhesives. As a result of the experiment on the selection of adequate phosphate and the characteristics of the addition rate of borax used as a retarder, the potassium phosphate monobasic was obtained as a suitable phosphate and the characteristics according to the borax addition rate were compared with the quality standard of KS F 4923 The hardening shrinkage and heat change rate satisfied the quality standards. The tensile strength was satisfactory when the borax addition rate was 4% or more, but the adhesive strength did not meet the quality standards. Further studies are needed to improve adhesion strength.

Development of Lightweight Composite Sub-frame in Automotive Chassis Parts Considering Structure & NVH Performance (구조 및 NVH 성능을 고려한 복합재료 서브프레임 개발)

  • Han, Doo-Heun;Ha, Sung
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • Recently, according to environmental regulations, the automobile industry has been conducting various research on the use of composite materials to increase fuel efficiency. However, there has not been much research on lightweight chassis components. Therefore, in this research, the purpose of this study is to apply composite materials to the sub-frame of chassis components to achieve equivalent levels of stiffness, strength, NVH performance and 50% lightweight compared to the steel sub-frame. First, the Natural frequency of steel and composite specimens was compared to the damping characteristics of composite materials. Then, in this study, the Lay-up Sequence was derived to maximize the stiffness and strength of the sub-frame by applying composite materials. And this lay-up Sequence is proposed to avoid heat shrinkage due to curing during manufacturing. This process was designed based on a FEM structural analysis, and a Natural frequency and frequency response function graph was confirmed based on a modal analysis. The prototype type composite sub-frame was manufactured based on the design and the F.E.M analysis was verified through a modal experiment. Furthermore, it was fitted to the actual vehicle to verify the natural frequency and the indoor noise vibration response, including idling and road noise. This result was confirmed to be equivalent to the steel sub-frame. Finally, the composite sub-frame weight was confirmed to be about 50% of the steel sub-frame.

Evaluation of Mechanical Performance Considering Prolonged Length of Glass Fiber-Reinforced Composite on Structure Weakness by Thermal Stress at Secondary Barrier in Cryogenic Liquified Gas Storage (극저온 액화가스 화물창 2차방벽 구조 열 응력 취약 부 Prolonged 길이 고려 유리섬유 강화 복합재 기계적 물성 평가)

  • Yeon-Jae Jeong;Hee-Tae Kim;Jeong-Dae Kim;Jeong-Hyun Kim;Seul-Kee Kim;Jae-Myung Lee
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.246-252
    • /
    • 2023
  • A secondary barrier made of glass fiber reinforced composites has been installed infinitely using automatic bonding machine(ABM) in membrane type LNG cargo containment system (CCS). At the same time, significant thermal stress due to cryogenic heat shrinkage has occurred in the composite on the non-bonding area between the adhesive fixation at both ends. There have been studies from the perspective of structural safety evaluation taking this into account, but none that have analyzed mechanical property taking an prolonged length into account. In this study, 2-parameter Weibull distribution statistical analysis was used to standardize reliable mechanical property for actual length, taking into account the composite's brittle fracture of ceramic material with wide fracture strength dispersion. Related experimental data were obtained by performing uniaxial tensile tests at specific temperatures below cryogenic condition considering LNG environment. As a result, the mechanical strength increased about 1.5 times compared to -20℃ at -70℃ and initial non-linear behavior of fiber stretched was suppressed. As the temperature decreased until the cryogenic, the mechanical strength continued to increase due to cold brittleness. The suggested mechanical property in this study would be employed to secure reliable analysis support material property when assessing the safety of secondary barrier's structures.

Preservation of Strawberries and Cucumbers Packaged by Low density polyethylene film impregnated with antimicmbial agent, Scutellariae baicalensis extract (황금추출물을 함유한 항균성 포장필름을 이용한 딸기와 오이의 저장효과)

  • 정순경;조성환
    • Food Science and Preservation
    • /
    • v.9 no.3
    • /
    • pp.271-276
    • /
    • 2002
  • To develop a wrapping film, which suppresses the microbial decay through the storage and prolongs the selflife of fruits and vegetables, the antimicrobial packaging films were prepared and applied to the preservation of strtwberries and cucumbers. Low density polyethylene(LDPE) film of 50㎛ thickness was faricated with 1% of Scutellariae baicalensis extract. The LDPE film impregnated with Scutellariae baicalensis extract showed antimicrobial activity on the disk test against Bacillus cereus, Escherchia coli and Fusarium sp.. The antimicrobial film changed the color and light transmittance, but did not affect heat shrinkage, mechanical tensile strength and wattability. Strawberries and cucumbers were separately wrapped with packaging films in the state of closely-adhered packaging as well as modified atmosphere packaging(MAP). The wrapped strawberries and cucumbers were stored for 21 days at 5$\^{C}$ and for 40 days at l0$\^{C}$, respectively. For the packaged strawberries and cucumbers at 5$\^{C}$ and 10$\^{C}$, the LDPE film impregnated with Scutellariae baicalensis extract showed the reduced growth of total aerobic bacteria, molds and yeasts and did not give any negative effect on other quality attributes during storage in comparison with conttrol film without any additive.

Studies on Silk Textile Wash and Wear Finishing (絹織物 Wash and Wear 加工硏究)

  • Choe, Byong-Hee;Lee, Yang-Hoo
    • Journal of Sericultural and Entomological Science
    • /
    • v.23 no.1
    • /
    • pp.47-55
    • /
    • 1981
  • Silk textile finishing has been studied for many years by many workers in order to meet more utilities for various endusers. Such studies, however, could not be successful because any natural fibers are hardly change their natures by artificial treating methods. Textile finishing is of course to improve the mechandise qualities and the poor natures of silk so that it may be available as the best textile fiber in the world. Sometimes, famous trade marked textile plays more power than its quality in the silk market, nevertheless, this should be over line of research activities. Meantime, the silk demand has been also transferred from ladies stocking to other clothes since nylon or other synthetic fibers were developed. That is why, the extension of silk demand should be developed by various research works. Specially, silk is known as difficult textile to handle it during washing or ironing process which happened to depress down the silk usage for house wives. In order to solve such problems, the reporter has been worked for many years and now, he believes that he has developed a proper finishing method to coversuch problems. The developed finishing method may be said to eligible with economical aspect and shorten the dry duration after water washing in half against normal silk textile without harming the specific silk nature. As all of us know, silk fiber starts to denature since it was spinned by silkworm and the fiber is formed as overlapped "S" type curves during its concooning process. After it is made as raw silk or sericin silk, it shows as straight line form, but it changes in to waved form in case refining or degumming process in order return to its original spinned form. Such nature is continued during its textile form and ends with hard ironing nature than other textile fibers. Mean while, the silk fiber keeps to continue its denaturing and this is iniciated by repeat of washing and drying which takes many years to reach its final stage, The reporter has found the iniciating denature of silk by his finishing process, with out heat, decreasing the swollen nature which ended with shortening the drying duration after wash. Each washing was carried out by soaking the previously weighed sample in cold water for one hour, then pressed the sample for ten minutes to eliminate its free water component before weighing with same condition. According to this, the treated silk showed much denaturing after the finishing, but the standard silk progressed the denaturing by and by with the repeat of washing and drying, finally reached the same swollen degree of treated silk, Such treating result explains that the treated silk happened to be stebilized nature by the treating immediately. On the other that the treated silk happened to be stebilized nature by the treating immediately. On the other hand, standard silk may reach to such condition by the time of worn out clothes after repeat of washing and drying for many years while the clothes will be no more useful. The decreased swelling nature has brought about the drying period in half against standard silk after all. Not only the tests of tenacity and elongation but also crease resistance recovery, stiffness and shrinkage tests were carried out after each washing and drying which he has found better result on the treated silk textile against the standard silk. The most important thing was to keep the textile feeling of silk by such finishing work before improve any poor nature of silk. The general silk has a nature to absorb smoke or dirt from its surrounding air and reaches to dirty color shade upon such exposure, but the treated one has improved such nature because of its artificial denaturing, another word, it keeps clean longer than the normal silk. Many previous finishing works could improve some specific nature of silk, but it happened to deprave other important natures. The reporters work is, however, specialized to improve the silk to be useful as Wash and Wear Silk without harming its standard natures. So far, this work happened to be a overall innovative finishing method of silk textile.

  • PDF

COATED PARTICLE FUEL FOR HIGH TEMPERATURE GAS COOLED REACTORS

  • Verfondern, Karl;Nabielek, Heinz;Kendall, James M.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.603-616
    • /
    • 2007
  • Roy Huddle, having invented the coated particle in Harwell 1957, stated in the early 1970s that we know now everything about particles and coatings and should be going over to deal with other problems. This was on the occasion of the Dragon fuel performance information meeting London 1973: How wrong a genius be! It took until 1978 that really good particles were made in Germany, then during the Japanese HTTR production in the 1990s and finally the Chinese 2000-2001 campaign for HTR-10. Here, we present a review of history and present status. Today, good fuel is measured by different standards from the seventies: where $9*10^{-4}$ initial free heavy metal fraction was typical for early AVR carbide fuel and $3*10^{-4}$ initial free heavy metal fraction was acceptable for oxide fuel in THTR, we insist on values more than an order of magnitude below this value today. Half a percent of particle failure at the end-of-irradiation, another ancient standard, is not even acceptable today, even for the most severe accidents. While legislation and licensing has not changed, one of the reasons we insist on these improvements is the preference for passive systems rather than active controls of earlier times. After renewed HTGR interest, we are reporting about the start of new or reactivated coated particle work in several parts of the world, considering the aspects of designs/ traditional and new materials, manufacturing technologies/ quality control quality assurance, irradiation and accident performance, modeling and performance predictions, and fuel cycle aspects and spent fuel treatment. In very general terms, the coated particle should be strong, reliable, retentive, and affordable. These properties have to be quantified and will be eventually optimized for a specific application system. Results obtained so far indicate that the same particle can be used for steam cycle applications with $700-750^{\circ}C$ helium coolant gas exit, for gas turbine applications at $850-900^{\circ}C$ and for process heat/hydrogen generation applications with $950^{\circ}C$ outlet temperatures. There is a clear set of standards for modem high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a $500{\mu}m$ diameter $UO_2$ kernel of 10% enrichment is surrounded by a $100{\mu}m$ thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of $35{\mu}m$ thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum $1600^{\circ}C$ afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modem coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond $1600^{\circ}C$ for a short period of time. This work should proceed at both national and international level.