• Title/Summary/Keyword: heat shock proteins

Search Result 322, Processing Time 0.049 seconds

Working Mechanism of Peroxiredoxins (Prxs) and Sulphiredoxin1 (Srx1) in Arabidopsis thaliana (애기장대 peroxiredoxins (Prxs)과 sulphiredoxin1 (Srx1)의 작용기작)

  • Kim, Min-Gab;Su'udi, Mukhamad;Park, Sang-Ryeol;Hwang, Duk-Ju;Bae, Shin-Chul
    • Journal of Life Science
    • /
    • v.20 no.12
    • /
    • pp.1777-1783
    • /
    • 2010
  • Plants generate reactive oxygen species (ROS) as a by-product of normal aerobic metabolism or when exposed to a variety of stress conditions, which can cause widespread damage to biological macromolecules. To protect themselves from oxidative stress, plant cells are equipped with a wide range of antioxidant proteins. However, the detailed reaction mechanisms of these are still unknown. Peroxiredoxins (Prxs) are ubiquitous thiol-containing antioxidants that reduce hydrogen peroxide with an N-terminal cysteine. The active-site cysteine of peroxiredoxins is selectively oxidized to cysteine sulfinic acid during catalysis, which leads to inactivation of peroxidase activity. This oxidation was thought to be irreversible. Recently identified small protein sulphiredoxin (Srx1), which is conserved in higher eukaryotes, reduces cysteine.sulphinic acid in yeast peroxiredoxin. Srx1 is highly induced by $H_2O_2$-treatment and the deletion of its gene causes decreased yeast tolerance to $H_2O_2$, which suggest its involvement in the metabolism of oxidants. Moreover, Srx1 is required for heat shock and oxidative stress induced functional, as well as conformational switch of yeast cytosolic peroxiredoxins. This change enhances protein stability and peroxidase activity, indicating that Srx1 plays a crucial role in peroxiredoxin stability and its regulation mechanism. Thus, the understanding of the molecular basis of Srx1 and its regulation is critical for revealing the mechanism of peroxiredoxin action. We postulate here that Srx1 is involved in dealing with oxidative stress via controlling peroxiredoxin recycling in Arabidopsis. This review article thus will be describing the functions of Prxs and Srx in Arabidopsis thaliana. There will be a special focus on the possible role of Srx1 in interacting with and reducing hyperoxidized Cys-sulphenic acid of Prxs.

Association between the HSPA1B ±1267A/G Polymorphism and Cancer Risk: a Meta-analysis of 14 Case-Control Studies

  • Kuang, Dan;Chen, Wei;Song, Yue-Zhang;Yu, Yan-Yan;Zhang, Dong-Ying;Wu, Lang;Tang, Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6855-6861
    • /
    • 2014
  • Background: Previous epidemiological studies have suggested a potential role of the $HSPA1B{\pm}1267A/G$ polymorphism in risk of developing cancer. However, the results were inconsistent. Therefore, we performed this meta-analysis to summarize the possible association with cancer risk. Materials and Methods: We retrieved relevant articles from PubMed, EMBASE, ISI Web of Science, Chinese Biomedical Literature and Chinese National Knowledge Infrastructure. Studies were selected using specific criteria. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to assess those associations. All analyses were performed using STATA software. Results: Fourteen case-control studies, including 1, 834 cancer cases and 2, 028 controls were included in this meta-analysis. Overall, the results indicated that the G allele of HSPA1B gene ${\pm}1267A/G$ was significantly associated with an increased cancer risk in all genetic models (G vs A: OR=1.51, 95%CI 1.17-1.95, p=0.001; GG vs AA: OR=2.93, 95%CI 1.50-5.74, p=0.002; AG vs AA: OR=1.48, 95%CI 1.10-1.98, p=0.009; GG/AG vs AA: OR=1.69, 95%CI 1.22-2.33, p=0.001; GG vs AG/AA: OR=2.31, 95%CI 1.24-4.32, p=0.009). In the subgroup analysis stratified by ethnicity, a significant association was identified in Caucasians (G vs A: OR=1.35, 95%CI 1.08-1.69, p=0.008; GG/AG vs AA: OR=1.36, 95%CI 1.09-1.70, p=0.007), but not in Asians. In the stratified analysis by cancer types, individuals with the G allele showed an increased risk of hepatocellular carcinoma compared with carriers of the A allele (OR=2.40, 95%CI 1.47-3.91, p<0.001). Inversely, individuals with the GG genotype showed a decreased risk of gastric cancer compared with carriers of the AG/GG genotypes (GG vs AG/AA: OR=0.39, 95%CI 0.20-0.70, p=0.007). Conclusions: This meta-analysis suggests associations between the HSPA1B ${\pm}1267A/G$ polymorphism and risk of cancer. However, this association might be Caucasian-specific and the G allele of this polymorphism probably increases risk of hepatocellular carcinoma while decreasing risk of gastric cancer. Further well-designed studies based on larger sample sizes are needed to validate these findings.

Comparison of Gene Expression in Larval Fat Body of Helicoverpa assulta in Different Temperature Conditions (온도변화에 따른 담배나방 유충 지방체의 유전자 발현 비교 분석)

  • Cha, Wook Hyun;Kim, Kwang Ho;Lee, Dae-Weon
    • Korean journal of applied entomology
    • /
    • v.57 no.3
    • /
    • pp.165-175
    • /
    • 2018
  • Insects are known to live at wide range of temperature, but can not survive when they are exposed to over $40^{\circ}C$ or below supercooling point. The larvae of Helicoverpa assulta have been reared at high ($35^{\circ}C$), low (3 to $10^{\circ}C$), and room temperature ($25^{\circ}C$; control). To identify stress-related genes, the transcriptomes of fat body have been analyzed. Genes such as cuticular proteins, fatty acyl ${\Delta}9$ desaturase and glycerol 3 phosphate dehydrogenase were up-regulated whereas chitin synthase, catalase, and UDP-glycosyltransferase were down-regulated at low temperature. Superoxide dismutase, metallothionein 2, phosphoenolpyruvate carboxykinase and trehalose transporter have been up-regulated at high temperature. In addition, expressions of heat shock protein and glutathione peroxidase were increased at high temperature, but decreased at low temperature. These temperature-specific expressed genes can be available as markers for climate change of insect pests.

Analysis of Physiological Alterations in Development and Mating Behavior by Ultrasound Treatment in the Beet Armyworm, Spodoptera exigua (초음파 처리에 따른 파밤나방(Spodoptera exigua)의 발육 및 교미행동 교란 분석)

  • Kim, Yong-Gyun;Son, Ye-Rim;Park, Bok-Ri
    • Korean journal of applied entomology
    • /
    • v.51 no.3
    • /
    • pp.223-230
    • /
    • 2012
  • Some high frequency sounds alter physiological processes of the beet armyworm, Spodoptera exigua. This study investigated the effect of ultrasound (${\geq}$ 20 kHz) on larval feeding, pupal development, and adult mating behavior of S. exigua. Ultrasound suppressed feeding behavior of fifth instar larvae, and 30 or 45 kHz treatment inhibited more than 50% of feeding activity. Larvae treated with ultrasound exhibited alterations in major nutrient compositions in the hemolymph plasma. Plasma protein levels decreased with an increase in ultrasound frequency. In contrast, sugar levels increased with an increase in ultrasound frequency. Lipid levels increased with an increase in ultrasound frequency up to 30 kHz and then decreased at treatments > 30 kHz. Hemocytes, the fat body, and epidermis expressed three heat shock proteins and apolipophorin III. Ultrasound treatment markedly inhibited expression of some stress-related genes. Ultrasound treatment also inhibited S. exigua pupal development by extending the pupal developmental period and preventing adult emergence. Last, ultrasound treatment significantly inhibited adult mating behavior, which resulted in a significant decrease in female fecundity. These results show that ultrasound is a physiological stress to S. exigua.

Characterization of Root Transcriptome among Korean Ginseng Cultivars and American Ginseng using Next Generation Sequencing (차세대염기서열 분석을 이용한 고려인삼과 미국삼의 전사체 분석)

  • Jo, Ick Hyun;Kim, Young Chang;Lee, Seung Ho;Kim, Jang Uk;Kim, Sun Tae;Hyun, Dong Yun;Kim, Dong Hwi;Kim, Kee Hong;Kim, Hong Sig;Chung, Jong Wook;Bang, Kyong Hwan
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.5
    • /
    • pp.339-348
    • /
    • 2014
  • The transcriptomes of four ginseng accessions such as Cheonryang (Korean ginseng cultivar), Yunpoong (Korean ginseng cultivar), G03080 (breeding line of Korean ginseng), and P. quinquefolius (American ginseng) was characterized. As a result of sequencing, total lengths of the reads in each sample were 156.42 Mb (Cheonryang cultivar), 161.95 Mb (Yunpoong cultivar), 165.07 Mb (G03080 breeding line), and 166.48 Mb (P. quinquefolius). Using a BLAST search against the Phytozome databases with an arbitrary expectation value of 1E-10, over 20,000 unigenes were functionally annotated and classified using DAVID software, and were found in response to external stress in the G03080 breeding line, as well as in the Cheonryang cultivar, which was associated with the ion binding term. Finally, unigenes related to transmembrane transporter activity were observed in Cheonryang and P. quinquefolius, which involves controlling osmotic pressure and turgor pressure within the cell. The expression patterns were analyzed to identify dehydrin family genes that were abundantly detected in the Cheonryang cultivar and the G03080 breeding line. In addition, the Yunpoong cultivar and P. quinquefolius accession had higher expression of heat shock proteins expressed in Ricinus communis. These results will be a valuable resource for understanding the structure and function of the ginseng transcriptomes.

Gene expression changes in silkworm embryogenesis for prediction of hatching time

  • Jong Woo Park;Chang Hoon Lee;Chan Young Jeong;Hyeok Gyu Kwon;Seul Ki Park;Ji Hae Lee;Sang Kuk Kang;Seong-Wan Kim;Seong-Ryul Kim;Hyun-Bok Kim;Kee Young Kim
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.46 no.1
    • /
    • pp.16-23
    • /
    • 2023
  • The silkworm's dormancy and embryonic development are accomplished through the interaction of various genes. Analysis of the expression of several interacting genes can predict the embryonic stage of silkworms. In this study, we analyzed the changes in the expression level of genes at each stage during the embryonic development of dormant silkworm eggs and selected genes that can predict the hatching time. Jam123 and Jam124 silkworms were collected after egg laying, and the silkworm eggs were preserved using a double refrigeration method and expression analysis was performed for 23 genes during embryogenesis. There were 5 genes showing significant changes during embryogenesis: UDP-glucuronosyltransferases (BmUGTs), heat shock protein hsp20.8 (BmHsp20.8), Cytochromes b5-like proteins (BmCytb5), Krüppel homolog 1 (BmKr-h1), and cuticular protein RR-1 motif 41 (BmCpr41). As a result of quantitative comparison of the expression levels of these 5 genes through real-time PCR, the BmUGTs gene showed a difference between Jam123 and Jam124, making it difficult to see it as an indicator for predicting hatching time. However, the BmHsp20.8 gene had a common expression decreased at the imminent hatching stage. In addition, it was confirmed that the expression level of the BmCytb5 gene decreased to the lowest level at the time of imminent hatching, and the expression of the BmKr-h gene was made only at the time of imminent hatching. The expression of the last BmCpr41 gene can be confirmed only at the time of imminent hatching, and it was confirmed that it shows a rapid increase right before hatching. Taken together, these results suggest that expression analysis of BmHsp20.8, BmCytb5, BmKr-h1, and BmCpr41 genes can determine the stage of embryogenesis, predict hatching time, which facilitate better management of silkworm eggs.

Lung Injury Indices Depending on Tumor Necrosis Factor-$\alpha$ Level and Novel 35 kDa Protein Synthesis in Lipopolysaccharide-Treated Rat (내독소처치 흰쥐에서 Tumor Necrosis Factor-$\alpha$치 상승에 따른 폐손상 악화 및 35 kDa 단백질 합성)

  • Choi, Young-Mee;Kim, Young-Kyoon;Kwon, Soon-Seog;Kim, Kwan-Hyoung;Moon, Hwa-Sik;Song, Jeong-Sup;Park, Sung-Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.6
    • /
    • pp.1236-1251
    • /
    • 1998
  • Background : TNF-$\alpha$ appears to be a central mediator of the host response to sepsis. While TNF-$\alpha$ is mainly considered a proinflammatory cytokine, it can also act as a direct cytotoxic cytokine. However, there are not so many studies about the relationship bet ween TNF-$\alpha$ level and lung injury severity in ALI, particularly regarding the case of ALI caused by direct lung injury such as diffuse pulmonary infection. Recently, a natural defense mechanism, known as the stress response or the heat shock response, has been reported in cellular or tissue injury reaction. There are a number of reports examining the protective role of pre-induced heat stress proteins on subsequent LPS-induced TNF-$\alpha$ release from monocyte or macrophage and also on subsequent LPS-induced ALI in animals. However it is not well established whether the stress protein synthesis such as HSP can be induced from rat alveolar macrophages by in vitro or in vivo LPS stimulation. Methods : We measured the level of TNF-$\alpha$, the percentage of inflammatory cells in bronchoalveolar lavage fluid, protein synthesis in alveolar macrophages isolated from rats at 1, 2, 3, 4, 6, 12, and 24 hours after intratracheal LPS instillation. We performed histologic examination and also obtained histologic lung injury index score in lungs from other rats at 1, 2, 3, 4, 6, 12, 24 h after intratracheal LPS instillation. Isolated non-stimulated macrophages were incubated for 2 h with different concentration of LPS (0, 1, 10, 100 ng/ml, 1, or 10 ${\mu}g/ml$). Other non-stimulated macrophages were exposed at $43^{\circ}C$ for 15 min, then returned to at $37^{\circ}C$ in 5% CO2-95% for 1 hour, and then incubated for 2 h with LPS (0, 1, 10, 100ng/ml, 1, or 10 ${\mu}g/ml$). Results : TNF-$\alpha$ levels began to increase significantly at 1 h, reached a peak at 3 h (P<0.0001), began to decrease at 6 h, and returned to control level at 12 h after LPS instillation. The percentage of inflammatory cells (neutrophils and alveolar macrophages) began to change significantly at 2 h, reached a peak at 6 h, began to recover but still showed significant change at 12 h, and showed insignificant change at 24 h after LPS instillation compared with the normal control. After LPS instillation, the score of histologic lung injury index reached a maximum value at 6 h and remained steady for 24 hours. 35 kDa protein band was newly synthesized in alveolar macrophage from 1 hour on for 24 hours after LPS instillation. Inducible heat stress protein 72 was not found in any alveolar macrophages obtained from rats after LPS instillation. TNF-$\alpha$ levels in supernatants of LPS-stimulated macro phages were significantly higher than those of non-stimulated macrophages(p<0.05). Following LPS stimulation, TNF-$\alpha$ levels in supernatants were significantly lower after heat treatment than in those without heat treatment (p<0.05). The inducible heat stress protein 72 was not found at any concentrations of LPS stimulation. Whereas the 35 kDa protein band was exclusively found at dose of LPS of 10 ${\mu}g/ml$. Conclusion : TNF-$\alpha$ has a direct or indirect close relationship with lung injury severity in acute lung injury or acute respiratory distress syndrome. In vivo and in vitro LPS stimulation dose not induce heat stress protein 72 in alveolar macrophages. It is likely that 35 kDa protein, synthesized by alveolar macrophage after LPS instillation, does not have a defense role in acute lung injury.

  • PDF

The Immunohistochemical Analysis for the Expression of Survivin, HSP, and Bcl-2 in Non-small Cell Lung Carcinoma (비소세포폐암에서 Survivin, HSP 및 Bcl-2 발현에 관한 면역조직화학적 분석)

  • Hong, Hyun-Ju;Hong, Seok-Gyun;Lee, Kye-Young;Kim, Woo-Ho;Lee, Choon-Taek;Yoo, Chul-Gyu;Han, Sung-Koo;Shim, Young-Soo;Kim, Young-Whan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.5
    • /
    • pp.441-452
    • /
    • 2002
  • Background : Anti-apoptotic proteins may be involved in tumor development, progression and the response to treatment, Bcl-2 is by far the most studied anti-apoptotic protein. A novel inhibitor of apoptosis, designated survivin, and the heat shock proteins (HSPs) have recently been found in many human cancers. Immunohistochemical methods were used to determine the expression level of survivin, HSP70 and bcl-2 in non-small cell lung cancer (NSCLC) to evaluate their clinical significance. Materials and Methods : Tissue array slides were obtained from 99 surgically resected NSCLCs. Immunohistochemical staining was performed by an immuno-peroxidase technique using an avidin-biotinylated horseradish peroxidase complex. Anti-survivin rabbit polyclonal antibodies, anti-HSP70 mouse monoclonal antibodies and anti-bcl-2 mouse monoclonal antibodies were used as the primary antibodies. Results : Positive staining of survivin was detected in 33.3% of the cases. Survivin positivity is associated with to females and recurrence. A nonstatistically significant trend toward increased survivin expression was observed in non-smokers, and its expression inversely correlated with the number of cigarettes smoked in smokers. HSP70 was detected in 84.8% but this did not correlated with the clinicopathologic characteristics. Bcl-2 was detected in 18.2% and its expression correlated to tumor recurrence. No significant difference in the median survival time was noted in a comparison of all cases with survivin expression and those without. There was no association between HSP70 or bcl-2 expression and survival. Conclusion : Survivin expression was significantly associated with females and tumor recurrence. In addition its expression was inversely associated with the number of cigarettes smoked. However, HSP70 and bcl-2 expression were not associated with the clinical parameters or survival. This suggests that measuring the survivin levels may be useful in identifying patients at high risk for disease recurrence. Therefore, survivin might be a new diagnostic/therapeutic target in cancer.

Effects of Chronic and Acute Stress on Clusterin Secretion of the Rat Submandibular Gland (급만성 스트레스가 백서 악하선의 Clusterin 분비에 미치는 영향)

  • Jin, Sang-Bae;Chun, Yang-Hyun;Hong, Jung-Pyo
    • Journal of Oral Medicine and Pain
    • /
    • v.31 no.1
    • /
    • pp.79-89
    • /
    • 2006
  • The aim of this study is to know how the rat submandibular gland changes under various emotional stress condition, using molecular biological methods. Restraint and chronic unpredictable mild stress (CUMS) experiment is conducted on fifty one 7-week old Sprague-Dawley rats (restraint stress experiment: 21, CUMS: 30). The rats were sacrificed, the submandibular glands were excised immediately at certain time, and examined by the use of immunohistochemistry and western blotting. In CUMS experiment, sucrose preference test, water intake change, weight change were implemented at 1 week interval for the experimental period The results are as follows: 1. The number of clusterin-secreting cells of restraint stress group compared to control group showed significantly decreasing tendency in all experimental groups except for the 1st hour group (p<0.001 in the 9th, 24th, 72nd, 120th, and 168th hour group). 2. The number of clusterin-secreting cells of CUMS group compared to control group showed significantly increasing tendency in the 2nd week group (p<0.01), and significantly decreasing tendency in the 4th and 5th week group (p<0.001). 3. Sucrose preference test in CUMS experiment showed significant difference between the 5th week experimental group and control group (p<0.01). 4. Weight change in CUMS experiment showed significant difference between the 5th week experimental group and control group (p<0.01), but water intake change didn't show significant difference compared to control group. 5. In western blot analysis, clusterin expression was decreased on a gradual basis in due time compared to the control group in the restraint stress group. As for CUMS group (chronic unpredictable mild stress group), it was increased till the 2nd week and decreased till the 5th week after that, which is similar to immunohistochemical analysis result and the decreasing tendency of sucrose preference and weigh changes. Through the test, it was proved that expression of clusterin in saliva glands decreases after receiving either acute or chronic stress, indicating relation with depression caused by chronic stress. Unlike other data, however, apoptotic tendency was hardly found in tissues. Diverse possibilities could be suggested on that: first, the stress was not enough to expedite apoptosis; second, apoptosis-related protein was already being secreted though not detected with microscope; third, clusterin, a major secretion molecule of saliva, decreased with saliva's malfunction due to stress. In the respect, it will be necessary to examine proteins expressed in case of cell death or other heat-shock proteins at the same time, in order to see whether any cellular change or death is caused by decreasing clusterin under high stress, and whether the original state is restored as time goes by under mild stress, through longer-term tests using even higher acute stress.

Oxidative Stress-dependent Structural and Functional Regulation of 2-cysteine Peroxiredoxins In Eukaryotes Including Plant Cells (산화 스트레스에 의존한 식물 및 진핵세포 2-시스테인 퍼록시레독신의 기능 조절)

  • Jang, Ho-Hee;Kim, Sun-Young;Lee, Sang-Yeol
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Peroxiredoxins (Prxs) are ubiquitously distributed and play important functions in diverse cellular signaling systems. The proteins are largely classified into three groups, such as typical 2-Cys Prx, atypical 2-Cys Prx, and 1-Cys Prx, that are distinguished by their catalytic mechanisms and number of Cys residues. From the three classes of Prxs, the typical 2-Cys Prx containing the two-conserved Cys residues at its N-terminus and C-terminus catalyzes $H_2O_2$ with the use of thioredoxin (Trx) as an electron donor. During the catalytic cycle, the N-terminal Cys residue undergoes a peroxide-dependent oxidation to sulfenic acid, which can be further oxidized to sulfinic acid at the presence of high concentrations of $H_2O_2$ and a Trx system containing Trx, Trx reductase, and NADPH. The sulfinic acid form of 2-Cys Prx is reduced by the action of sulfiredoxin which requires ATP as an energy source. Under the strong oxidative or heat shock stress conditions, 2-Cys Prx in eukaryotes rapidly switches its protein structure from low-molecular-weight species to high-molecular-weight protein structures. In accordance with its structural changes, the protein concomitantly triggers functional switching from a peroxidase to a molecular chaperone, which can protect its substrate denaturation from external stress. In addition to its N-terminal active site, the C-terminal domain including 'YF-motif' of 2-Cys Prx plays a critical role in the structural changes. Therefore, the C-terminal truncated 2-Cys Prxs are not able to regulate their protein structures and highly resistant to $H_2O_2$-dependent hyperoxidation, suggesting that the reaction is guided by the peroxidatic Cys residue. Based on the results, it may be concluded that the peroxidatic Cys of 2-Cys Prx acts as an '$H_2O_2$-sensor' in the cells. The oxidative stress-dependent regulation of 2-Cys Prx provides a means of defense systems in cells to adapt stress conditions by activating intracellular defense signaling pathways. Particularly, 2-Cys Prxs in plants are localized in chloroplasts with a dynamic protein structure. The protein undergoes conformational changes again oxidative stress. Depending on a redox-potential of the chloroplasts, the plant 2-Cys Prx forms super-molecular weight protein structures, which attach to the thylakoid membranes in a reversible manner.