• 제목/요약/키워드: heat pressing

검색결과 188건 처리시간 0.023초

스파크 플라스마 소결공정의 전산모사(2부 : 해석) (Computer aided simulation of spark plasma sintering process (Part 2 : analysis))

  • 금영탁;정상철;전종훈
    • 한국결정성장학회지
    • /
    • 제16권1호
    • /
    • pp.43-48
    • /
    • 2006
  • 본 2부의 연구에서는 스파크 플라스마 소결의 온도분포, 상대밀도, 입자성장을 해석 하기 위하여 1부 연구의 시뮬레이션 이론을 바탕으로 스파크 플라스마 소결공정을 유한요소법(FEM)과 몬테카를로법(MCM)으로 전산모사하고 실험치와 비교한다. 전산모사를 통하여 소결체의 소결온도가 높을수록 입자성장이 커지고 밀도가 높아져 기계적 성질이 향상되고, 고상 소결에서 몬테카르로 단계가 증가할 수록 기공의 감소와 입자크기의 증대함을 보여 준다.

Thermoelectric Properties of Fe-doped $CoSb_3$ Prepared by Encapsulated Induction Melting and Hot Pressing

  • Park, Kwan-Ho;Kim, Mi-Jung;Jung, Jae-Yong;You, Sin-Wook;Lee, Jung-Il;Ur, Soon-Chul;Kim, Il-Ho
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.686-687
    • /
    • 2006
  • The encapsulated induction melting and hot pressing were employed to prepare Fe-doped $CoSb_3$ skutterudites and their thermoelectric properties were investigated. Single phase $\delta-CoSb_3$ was successfully obtained by the subsequent heat treatment at 773K for 24 hours. Iron atoms acted as electron acceptors by substituting cobalt atoms. Thermoelectric properties were remarkably improved by the appropriate doping. $Co_{0.7}Fe_{0.3}Sb_3$ was found as an optimum composition for best thermoelectric properties in this work.

  • PDF

DOHC 가솔린기관의 연소실 벽표면순간온도 및 비정상 열유속 측정 및 해석(제3보 : 실린더 라이너에 관한 연구) (Measurement and Analysis of Instantaneous Surface Temperature and Unsteady Heat Flux at Combustion Chamber of DOHC Gasoline Engine ; Cylinder Linder)

  • 위신환;이종태
    • 한국자동차공학회논문집
    • /
    • 제8권3호
    • /
    • pp.1-11
    • /
    • 2000
  • Instantaneous temperature probes were manufactured by pressing method. By using these probes, the instantaneous surface temperature and unsteady heat flux in the cylinder liner of DOHC engine were measured. The main results are as follows; ⅰ) the instantaneous surface temperature of cylinder liner are affected by the contact of piston ring as well as burning gas. ⅱ) the wall temperature of the siamese portion is much higher than other parts. ⅲ) it was shown that the rising trend of heat flux by burning gas are nearly limited to the 1/2-stroke distance from the top of cylinder liner.

  • PDF

Assessment of the Corrosion Behavior of a Sintered Al-Cu-Mg Alloy in Aeronautical Environments as a Function of the Heat Treatment

  • Sanchez-Majado, S.;Torralba, J. M.;Jimenez-Morales, A.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.549-550
    • /
    • 2006
  • The corrosion performance of a powder metallurgical aluminum alloy in aeronautical environments was studied for both as sintered and heat treated states. Sintered samples were obtained by uniaxial pressing of an Al-Cu-Mg prealloyed powder followed by liquid phase sintering. The heat treatments applied were T4 and T6. Corrosion behaviour was assessed by means of potentiodynamic polarization. Results for the equivalent commercial wrought counterpart, AA2024-T3, are also presented for comparison. Similar corrosion performance was observed for both as sintered and AA2024-T3 samples, while corrosion resistance of the PM materials was improved by the heat treatment, especially in the T4 state.

  • PDF

나노표면 영역에서의 ECAP 변형된 알루미늄합금의 기계적 물성변화 측정 (Determination of Mechanical Properties of Equal Channel Angular Pressed Aluminum Alloys in Nano-surface Region)

  • 안성빈;김정석
    • 열처리공학회지
    • /
    • 제32권3호
    • /
    • pp.113-117
    • /
    • 2019
  • The effects of severe plastic deformation and heat treatment on the mechanical properties of Al 5052 and 6005 alloys were investigated using the metallurgical technique and nano-indentation technique in nano-surface region. Equal channel angular pressing (ECAP) was used to apply severe plastic deformation to the aluminum alloys in order to obtain fine grain sized materials. The elastic modulus was measured and interpreted in relation to the metallurgical observation. The elastic modulus increased after ECAP process due to evolution of the fine grains. However, the elastic modulus decreased after heat treatment due to generation of coarsened precipitates on the grain boundaries.

핫스탬핑 공정조건에 따른 기계적 특성 (The Effect of Hot Stamping Operation Condition on the Mechanical Properties)

  • 김훈동;문만빈;이승하;윤경원;유지홍
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.317-320
    • /
    • 2008
  • The Hot Stamping process, which is the hot pressing of steel parts using cold dies. can utilize both case of shaping and high strength due to the hardening effect of rapid quenching during the pressing. We carried out experiments of quenching rate and tempering treatments at temperatures of $200^{\circ}C$ and $300^{\circ}C$ and different soaking times. Tn this study, the mechanical properties and microstructure of micro boron alloyed steels after heat treatments are compared.

  • PDF

Nd-Fe-B-Cu합금의 변형속도에 따른 열간압축시 응력분포와 자기적 특성에 관한 연구 (A study on the stress Distributions and magnetic properties during Hot-pressing according to Strain Rate of Nd-Fe-B-Cu Alloys)

  • Park, J.D.;Jeung, W.Y.;Kwak, C.S.
    • 한국정밀공학회지
    • /
    • 제10권2호
    • /
    • pp.146-153
    • /
    • 1993
  • Thd specimens were melited in high frequency induction furnace. The samples for measurements were prepared by machining cylinder of 9.5mm diameter and 15mm height. These samples were then hot-pressed according to strain rate ( .epsilon. ). These samples were decanned and cut out, and subsequently heat treated at 1000 .deg. C for 4hours. These were investigated for the change of microstructure, domain pattern, X-ray diffraction and magnetic properties. The stress distributions in the specimens during compressing process were calculated by a finite element method program(SPID). The calculated stresses were effective stress( .sigma. $_{eff}$), compressive direction stress( .sigma. $_{z}$), and shear stress( .tau. $_{rz}$ ). These stresses were compared with the experimental data.a.a.

  • PDF

Thermal Shock Behavior of Barium Titanate Ceramics

  • Jae Yeon Kim;Young Wook Kim;Kyeong Sik Cho;June Gunn Lee
    • The Korean Journal of Ceramics
    • /
    • 제3권3호
    • /
    • pp.195-198
    • /
    • 1997
  • Post-firing process of electronic ceramic, such as electroding and encapsultion with resin, often causes damage by thermal shock. The thermal shock behavior of $BaTiO_3$ ceramics was investigated by the down-quench test, where the relative strength retained is determined after the sample is quenched from an elevated temperature into a fixed temperature bath. The critical temperature drop, $\DeltaTc$, was evaluated for three kinds of sintered $BaTiO_3$ ceramics, which were formed by extrustioin, uniaxial pressing using granules, and uniaxial pressing using powders. A drastic loss in strength caused by microcracking was observed for the specimens quenched with $\DeltaT\geq150^{\circ}C$. This concentp can be adopted as a method of the quality control by monitoring the sudden drop of the strength of capacitor products after each exposure to heat.

  • PDF

Ultrafine Grained Steels Processed by Equal Channel Angular Pressing

  • Shin, Dong Hyuk
    • Corrosion Science and Technology
    • /
    • 제5권1호
    • /
    • pp.23-26
    • /
    • 2006
  • Recent development of ultrafine grained (UFG) low carbon steels by using equal channel angular pressing (ECAP) and their room temperature tensile properties are reviewed, focusing on the strategies overcoming their inherent mechanical drawbacks. In addition to ferrite grain refinement, when proper post heat treatments are imposed, carbon atom dissolution from pearlitic cementite during ECAP can be utilized for microstructural modification such as uniform distribution of nano-sized cementite particles or microalloying element carbides inside UFG ferrite grains and fabrication of UFG ferrite/martensite dual phase steel. The utilization of nano-sized particles is effective on improving thermal stability of UFG low carbon ferrite/pearlite steel but less effective on improving its tensile properties. By contrast, UFG ferrite/martensite dual phase steel exhibits an excellent combination of ultrahigh strength, large uniform elongation and extensive strain hardenability.

Processing of Cellular SiC Ceramics Using Polymer Microbeads

  • Lee, Sung-Hee;Kim, Young-Wook
    • 한국세라믹학회지
    • /
    • 제43권8호
    • /
    • pp.458-462
    • /
    • 2006
  • A simple pressing process using a SiC powder, $Al_2O_3-Y_2O_3$ sintering additive, and polymer microbeads for fabricating cellular SiC ceramics is demonstrated. The strategy for making the cellular ceramics involves: (i) forming certain shapes using a mixture of a SiC powder, $Al_2O_3-Y_2O_3$ sintering additive, and polymer microbeads by pressing; (ii) heat-treatment of the formed body to burn-out the microbeads; and (iii) sintering the body. By controlling the microsphere content and sintering temperature, it was possible to adjust the porosity in a range of 16% to 69%. The flexural and compressive strengths of cellular SiC ceramics with $\sim$40% porosity were $\sim$60 MPa and $\sim$160 MPa, respectively.