• 제목/요약/키워드: heat permanent wave

Search Result 7, Processing Time 0.023 seconds

A Study on the Wave Type and the Damage of Hair according to Water content when Heat permanent is treated - Focus on Damaged Hair -

  • Lee, Soon-Hee;Choi, Jung-Myung
    • Journal of Fashion Business
    • /
    • v.12 no.6
    • /
    • pp.11-22
    • /
    • 2008
  • The goal of this study is to provide beauticians with the fundamental material to use effectively heat permanent wave in beauty industry as well as their customer's satisfaction. It carried out an experiment with damaged hair of a woman in her late twenties to investigate the change of physical and morphological characteristics by its water content when performing heat permanent wave. After spreading 0g, 1g, 2g, 3g, and 4g of water on damaged hair respectively, heat permanent wave was treated and the change of hair was observed. The change of physical characteristic was compared through permanent wave form of hair, tensile strength and elongation. The change of morphological characteristic was observed through Scanning Electron Microscope(SEM) and Transmission Electron Microscope(TEM). The result of experiment on the physical specificity revealed that permanent wave form was the most ideal when the water content was 2g, also 3g. Though the materials with much moisture content formed the results were not satisfied. The material with 0g of water content didn't make the wave. In terms of tensile strength and elongation, tensile strength was generally reduced as per the damaged degree of hair. On the contrary, elongation was increased. It observed the changes of morphological characteristic that the damage on hair cuticle was deepen, as its moisture content was decreased, and cuticle's surface was worn away. The observation of fine structure on hair section by transmission electronic microscope also certainly showed the result that damaged hair having experience with chemical treatment had got much damaged to hair cuticle as well as hair cortex. Generally chemical treatment makes hair damaged. Under consideration of this aspect, the ultimate goal of this thesis is to minimize the damage of hair caused by chemical treatment and get the satisfaction on the hair style. According to the result of experiment, the damaged hair whose moisture content was 3g showed the best permanent wave form.

Physical and Morphological Characteristics Change of Hair according to Water Content when Heat Permanent Wave is treated (열펌 시술시 수분함량에 따른 모발의 물리적·형태학적 특성 변화)

  • Lee, Soon-Hee;Kim, Sung-Nam
    • Fashion & Textile Research Journal
    • /
    • v.10 no.3
    • /
    • pp.389-393
    • /
    • 2008
  • The purpose of this study is to provide beauticians with the fundamental material for them to use effectively heat permanent wave and satisfy their customers. It carried out an experiment with hair of a woman in her late twenties to investigate the change of physical and morphologic characteristics by its water content when performing heat permanent wave. It evaluated the water content as 0g, 1g, 2g, 3g and 4g respectively when performing the heat permanent wave on hair, then it compared and observed the wave type, tensile strength and elongation for its physical change also observed the morphologic change by scanning electronic microscope and transmission electronic microscope. The result of experiment on the physical specificity revealed that the wave was the most ideal when the water content was 2 g. The material with much water content made wave but the result was not satisfied. In the case of hair with water content of nearly 0g didn't make wave. In terms of tensile strength and elongation, the tensile strength was generally reduced as hair was damaged, on the contrary, the elongation was increased. It observed the change of morphologic characteristic and got the result that the damage on hair cuticle was deepen as its water content was decreased. It also showed the result that damage happened on hair cuticle more than hair cortex with the observation of fine structure on hair section by transmission electronic microscope. Generally chemical treatment damaged hair. Under consideration of this aspect, the ultimate goal of this thesis is to minimize the damage of hair caused by chemical treatment and get the satisfaction on the hair style. The result of experiment presented that the hair showed the best result when its water content was 2 g.

A Study on the Wave Formation and Hair Damage Levels Relating to the Uses of Treatments for Heat Permanent Waves

  • Kim, Kwan-Ok;Kim, Sung-Nam
    • Journal of Fashion Business
    • /
    • v.12 no.6
    • /
    • pp.1-10
    • /
    • 2008
  • Public interest in healthy hairs gets growing as damaged hairs are seen more frequently with the generalization of heat permanent waves. For this study, experiments have been conducted to understand the influences on the changes in physical and morphological features of wave forms and damaged hairs, by collecting virgin hairs from the women in their mid-20's, who had not experienced chemical applications, and by dividing the applications of heat perm hair treatments, PPT(for pre-treatment) and LPP(for post-treatment), into the pre-treatment, the post-treatment, the pre & post-treatment, and the non-treatment. For the wave formations, curl waves were investigated by the bare eyes using the pictures taken by a digital camera. For the comparison of physical features, the experiments of tensile strength and elongation were done and their mean values were found. For the observations of morphological features, the pictures were taken by SEM for comparison. As for the findings, regarding the curl wave shapes of hairs, the most even and elastic S curl was formed in the case of non-treatment. In the physical features, both of the tensile strength and elongation showed a decreasing tendency in line with the hair damage levels, and the case of the pre & post-treatment indicated the tendency most similar to the control group. In the morphological features of the cuticle, observed with an SEM, the pre-treatment showed the higher possibility of reducing the cuticle damages than the post-treatment did. LPP was found to play the role of protective membrane for the post-treatment, and the pre & post-treatment turned out to reduce most effectively the cuticle damages.

Analysis of roughness of wave hair formed by thermal perm (열 펌으로 형성된 웨이브 모발의 거칠기 분석)

  • Park, Jang-Soon;Lim, Sun-Nye
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.235-241
    • /
    • 2021
  • Appearance management through hair beauty forms the basis of the beauty industry, while permanent waves using heat are often used in hair salons, but hair damage due to thermal permanent wave treatment is an inevitable reality. Therefore, this study was conducted for the purpose of presenting an efficient method for thermal permanent wave that can further increase hair wave formation ability and minimize customer's hair damage. After collecting virgin hair from the occipital region, thermal rod pretreatment and thermal permanent wave treatment were performed, and hair roughness analysis and 3D-image were studied using an Atomic Force Microscope. As a result of the study, both the average roughness (Ra) and the ten point average roughness (Rz) were calculated as 223 nm and 853 nm for 4 sections, respectively, showing the highest values. Although the number of samples of the experimental data is limited, the wave forming power can be further increased through this study, and it is expected that it will be practically possible to propose an objective method for thermal permanent wave that can minimize hair damage as well as protect the cuticle of the customer's hair.Judge.

A Study of Effects of Heated Rods on Formation of Perm Waves and Hair Bleach (모발의 퍼머넌트 웨이브 형성 및 탈색에 미치는 열 함유 로드의 영향)

  • Jeon, Hyun Jin;Chung, Chan Yi;Lim, Sun Nye
    • Textile Coloration and Finishing
    • /
    • v.26 no.1
    • /
    • pp.63-70
    • /
    • 2014
  • This study has attempted to figure out the effects of the surface heat of perm rods on hair. For this, after forming perm waves, hair damage and its causes have been investigated with a different hair bleach method. If hair was bleached immediately without shampooing after a perm using the heat of rods, great perm waves were formed. However, severe damage was found on the hair because of the heated rods. In addition, when hair was shampooed and dried after the perm, hair bleach was more effective. It has been confirmed that hair was damaged because of high temperature of the surface of the rods. In fact, the heated rods had a direct effect on hair damage. According to these results, it has been confirmed that heat-based perms can accelerate hair damage. Therefore, it is necessary to perform a study on the minimization of the heating of permanent tools.

Local dynamic buckling of FPSO steel catenary riser by coupled time-domain simulations

  • Eom, T.S.;Kim, M.H.;Bae, Y.H.;Cifuentes, C.
    • Ocean Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.215-241
    • /
    • 2014
  • Steel catenary riser (SCR) is a popular/economical solution for the oil/gas production in deep and ultra-deep water. The behavioral characteristics of SCR have a high correlation with the motion of floating production facility at its survival and operational environments. When large motions of surface floaters occur, such as FPSO in 100-yr storm case, they can cause unacceptable negative tension on SCR near TDZ (touch down zone) and the corresponding elastic deflection can be large due to local dynamic buckling. The generation, propagation, and decay of the elastic wave are also affected by SCR and seabed soil interaction effects. The temporary local dynamic buckling vanishes with the recovery of tension on SCR with the upheaval motion of surface floater. Unlike larger-scale, an-order-of-magnitude longer period global buckling driven by heat and pressure variations in subsea pipelines, the sub-critical local dynamic buckling of SCR is motion-driven and short cycled, which, however, can lead to permanent structural damage when the resulting stress is greatly amplified beyond the elastic limit. The phenomenon is extensively investigated in this paper by using the vessel-mooring-riser coupled dynamic analysis program. It is found that the moment of large downward heave motion at the farthest-horizontal-offset position is the most dangerous for the local dynamic buckling.

P-wave Velocity Anisotropy in the Upper Crust of the Southern Korean Peninsula Using Seismic Signals from Large Explosions (대규모 발파자료를 이용한 한반도 남부 상부지각의 종파 속도 이방성)

  • Hong, Myung-Ho;Kim, Ki-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.3
    • /
    • pp.225-232
    • /
    • 2009
  • As part of seismic experiments investigating crustal velocity structures of the Korean peninsula, permanent (fixed) seismographs of the Korea Meteorological Administration (KMA) network recorded seismic signals from four and eight large explosions in Korean Crustal Research Team (KCRT) profiles shot in 2004 and 2008, respectively. Among the seismograms recorded by 43 velocity sensors and 103 accelerometers at KMA stations distributed throughout the southern Korean Peninsula, 156 records with epicentral distances less than 120 km and high signal-to-noise ratios were analyzed to determine velocity anisotropy of the Pg phase. Relative elevation corrections of -101.6 to 105.3 ms were made using velocity information derived from the 2004 KCRT profile data and differences in elevation between the permanent KMA stations and the temporary stations in the KCRT profiles at the same source-receiver offsets. To remove site effects, receiver-station corrections of -89.6 to 192.2 ms were additionally made to the KMA station data by subtracting the average differences in traveltimes between KMA stations and portable stations at the same offsets for all available shots with different azimuths. With the exception of anomalously fast velocities along trends of the Chugaryeong fault zone and the Okchon fold belt and anomalously slow velocities in the regions of high terrestrial heat near Yeongduk and Ulsan, the analysis of crustal velocity anisotropy using the Pg phase indicates overall isotropy in the southern half of the Korean peninsula.