• Title/Summary/Keyword: heat of oxidation

Search Result 619, Processing Time 0.023 seconds

Temperature Effects on the Persulfate Oxidation of Low Volatile Organic Compounds in Fine Soils (과황산나트륨 산화에 의한 토양내 저휘발성 유기오염물 제거 시 온도의 영향 평가)

  • Jeong, Kwon;Kim, Do-Gun;Han, Dai-Sung;Ko, Seok-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.2
    • /
    • pp.7-14
    • /
    • 2012
  • Batch tests were carried out to evaluate the thermal treatment of low volatile organic compounds in low-permeability soil. The chemical oxidation by sodium persulfate catalyzed by heat and Fe (II) was evaluated. Enhanced persulfate oxidation of n-decane (C-10), n-dodecane (C-12), n-tetradecane (C-14), n-hexadecane (C-16), and phenanthrene was observed with thermal catalyst, indicating increased sulfate radical production. Slight enhancement of the pollutants oxidation was observed when initial sodium persulfate concentration increased from 5 to 50 g/L. However, the removal efficiency greatly decreased as soil/water ratio increased. It indicates that mass transfer of the pollutants as well as the contact between the pollutants and sulfate radical were inhibited in the presence of solids. In addition, more pollutants can be adsorbed on soil particles and soil oxidant demand increased when soil/water ratio becomes higher. The oxidation of the pollutants was significantly improved when catalyzed by Fe(II). The sodium persulfate consumption increased at the same time because the residual Fe(II) acts as the sulfate radical scavenger.

A Study on Syngas Production By Noncatalytic Partial Oxidation of Methane (메탄의 무촉매 부분산화를 통한 합성가스 제조 연구)

  • Na, Ik-Hwan;Yang, Dong-Jin;Choi, Sin-Yeong;Chae, Tae-Young;Bang, Byoung-Yeol;Yang, Won
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.4
    • /
    • pp.337-343
    • /
    • 2009
  • Noncatalytic partial oxidation of methane for producing synthesis gas was studied in a lab-scale experimental apparatus. Partial oxidation developed for high-temperature, fuel-rich combustion and it is exothermic process. but Steam reforming and Caron reforming is highly endothermic process to need much energy. Noncatalytic partial oxidation of methane is affected by temperature and equivalent ratio, so we studied effect about composition of synthesis gas at lab scale reactor. We used electronic heater to control the temperature of reactor. The quality of synthesis gas is improved and reduced heat value to require at Noncatalytic partial oxidation because the reacting temperature is lower at oxy condition.

Characteristics of Thermal Oxidation on Hot-Pressed Pure Yttria Ceramics (고온가압으로 소결한 고순도 이트리아 세라믹 소결체의 산화반응 특성)

  • Choi, Jinsam;Shin, Dong Woo;Bae, Won Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.180-185
    • /
    • 2013
  • We investigated the characteristics of hot-pressed pure yttria ceramics, and annealed them in an oxidation atmosphere. Regardless of the heat treatment in the oxidation atmosphere, XRD analysis showed that all the samples had a $Y_2O_3$ phase without structural change. Even though the color variation of the hot-pressed $Y_2O_3$ ceramics was due to the sintering temperatures, the oxidation process turned the color of the $Y_2O_3$ ceramics into white. The color change during oxidation treatment appears to be related to oxygen defects. In addition, oxygen defects also affected the weight change and microstructure of the $Y_2O_3$ ceramics. The $Y_2O_3$ ceramic sintered at $1600^{\circ}C$ had a $5.03g/cm^3$ density, which is close to the theoretical density of $Y_2O_3$. As the sintering temperature increased, small homogeneous grains grew to large grains which affected the Vickers hardness. $Y_2O_3$ ceramics hot-pressed at $1600^{\circ}C$ and annealed at $1200^{\circ}C$ had a flexural strength of 140MPa.

Wear and Oxidation Charateristics of Two Phase Intermetallic Compounds (다상 금속간 화합물의 내마모 및 내산화 특성)

  • Lee, Jong-Hun;Bae, Jong-Uk;Lee, Sang-Yul
    • 연구논문집
    • /
    • s.28
    • /
    • pp.183-192
    • /
    • 1998
  • The wear and oxidation resistance of two phase nickel aluminides was investigated. Wear tests of various heat-treated specimens at room temperature and at $500^{\circ}C$ were performed under no lubricant condition in air by using a ball-on-disk type tribotester. Isothermal oxidation tests were made at $1100^{\circ}C$ in air flowing at the rate of 70cc/min and at $1000^{\circ}C$ in air by using TGA. Experimental results from wear tests showed that nickel aluminide with a higher content of Al had an improved wear resistance at both temperatures. Also the examination of the wear tracks after wear test at both room temperature and $500^{\circ}C$ indicated that regardless of the alloy compositions the wear tracks of the two phase nickel aluminides showed an abrasive type wear The improved oxidation resistance observed in the Ni-34at%Al alloy could to be attributed to the microstructural difference between the aluminides. An accelerated oxidation along the thin layer of $Ni_3AL$ along the grain boundary observed in the microstructure of the Ni-32at%Al aluminide could be attributed to the poor oxidation resistance.

  • PDF

Surface characteristics of Molybdenum Oxide Films Prepared by Oxidation Thermal Treatment Method (산화 열처리법에 의해 제작된 산화 몰리브데늄 박막의 표면특성 고찰)

  • Kim, Sang-Gon;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.3
    • /
    • pp.57-62
    • /
    • 2014
  • In this work, molybdenum oxide films were fabricated by heat-treatment method. Fundamental surface characteristics of molybdenum oxide films were investigated using XRD and Raman spectroscopy. From the results, the optimum MoOx films could be obtained under the conditions of thermal treatment temperature of $550^{\circ}C$, oxidation time of 30 minutes and oxygen flow rate of 250sccm. The thermal treatment method offers a simple and effective route for the synthesis of uniform $MoO_3$ films.

Effect of Thermal Oxidation Coating on the Hot Forging Process of High Strength Ti-6Al-4V Bolt (Ti-6Al-4V 고강도 볼트의 성형성에 미치는 표면산화효과)

  • Kim, Jeoung-Han;Lee, Chae-Hoon;Hong, Jae-Keun;Kim, Jae-Ho;Yeom, Jong-Taek
    • Transactions of Materials Processing
    • /
    • v.18 no.3
    • /
    • pp.251-255
    • /
    • 2009
  • Since fastener bolt for airplane require high specific strength and corrosion resistance, Ti-6Al-4V alloy is widely used. However, the Ti-6Al-4V bolt is generally manufactured by cutting and rolling because of their poor workability. The aim of present work is to develop hot forming technology for high strength Ti-6Al-4V. Various heat-treatments were applied to specimen in order to increase hot-workability and prevent galling with die. Multiple forging were simulated with FE code to determine optimum process parameters including specimen temperature, strain rate, local strain, and thermal shrinkage. Forged samples were heat-treated again to increase their mechanical properties.

Microwave Induced Reduction/Oxidation Reaction by SHS Technique (마이크로파를 이용한 SHS 방법에 의한 분말의 산화-환원반응)

  • 김석범
    • Korean Journal of Crystallography
    • /
    • v.9 no.1
    • /
    • pp.44-47
    • /
    • 1998
  • A reduction/oxidation reaction between A1 metal powder and SiO2 powder was performed by Self-propagating High-temperature Synthesis (SHS) reaction induced by microwave energy to produce a composite of Al2O3 and Si powders by using a 2.45 GHz kitchen model microwave oven. A Microwave Hybrid Heating(MHH) method was applied by using SiC powders as a suscepting material to raise the temperature of the disk samples and the heat increase rate of over 100℃/min were obtained before the reaction. The reaction started around 850℃ and the heat increase rate jumped to over 200℃/min after the reaction took place.

  • PDF

Lipolytic Changes in Fermented Sausages Produced with Turkey Meat: Effects of Starter Culture and Heat Treatment

  • Karslioglu, Betul;Cicek, Umran Ensoy;Kolsaric, Nuray;Candogan, Kezban
    • Food Science of Animal Resources
    • /
    • v.34 no.1
    • /
    • pp.40-48
    • /
    • 2014
  • In this study, the effects of two different commercial starter culture mixes and processing methodologies (traditional and heat process) on the lipolytic changes of fermented sausages manufactured with turkey meat were evaluated during processing stages and storage. Free fatty acid (FFA) value increased with fermentation and during storage over 120 d in all fermented sausage groups produced with both processing methodologies (p<0.05). After drying stage, free fatty acid values of traditional style and heat processed fermented sausages were between 10.54-13.01% and 6.56-8.49%, respectively. Thiobarbituric acid (TBA) values of traditionally processed fermented sausages were between $0.220-0.450mg{\cdot}kg^{-1}$, and TBA values of heat processed fermented sausages were in a range of $0.405-0.795mg{\cdot}kg^{-1}$. Oleic and linoleic acids were predominant fatty acids in all fermented sausages. It was seen that fermented sausage groups produced with starter culture had lower TBA and FFA values in comparison with the control groups, and heat application inhibited the lipase enzyme activity and had an improving effect on lipid oxidation. As a result of these effects, heat processed fermented sausages had lower FFA and higher TBA values than the traditionally processed groups.

Change in Engine Exhaust Characteristics Due to Automotive Waste Heat Recovery (엔진 배기 폐열회수로 인한 배기 특성 변화)

  • Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4723-4728
    • /
    • 2014
  • In this study, a thermoelectric module (TEM) and a diesel engine were modeled using 1-D commercial software AMESim, and the performance of the TEM was evaluated when the engine was operated under the NEDC driving cycle. The goal of TEM modeling was to investigate not only the waste heat recovery (WHR) rate and energy converting efficiency, but also the heat transfer rate by taking the materials characteristics into account. In addition, a diesel oxidation catalyst (DOC) was designed, and it was found that the waste heat recovery with TEM affects the activation of DOC and alters engine exhaust composition. The simulation indicated that the WHR using TEM is beneficial for decreasing the fuel consumption of vehicles, but the reduction in the exhaust temperature affects the activation of DOC, resulting in an approximately 14% increase in CO and HC emissions. Therefore, the effect of waste heat recovery on the automotive emission characteristics must be considered in the development of automotive engine WHR systems.