• Title/Summary/Keyword: heat of hydration in concrete

Search Result 538, Processing Time 0.022 seconds

Analysis Study for the Determination of Optimized Block Size in Mass Concrete (매스콘크리트에서 최적의 타설 단면 결정을 위한 해석적 연구)

  • 김진근;김상철;이두재;김국한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.422-429
    • /
    • 1997
  • Thermal stress induced by hydration heat may produce cracks in mass concrete structure, which can result in structural problems as well as bad appearance. To minimize crack occurrence in massive structural, thus, the study put an emphasis on the determination of optimized lift height and block size. In the parametric study different sizes and lift heights were used to measure the magnitudes of hydration heat and thermal stresses for 3 different types of concrete fabricated with 1 pure cement and 2 blended Portland cements. As a result of analysis. it was found that magnitude of hydration heat and the occurrence of thermal cracks depend on the restriction conditions and material characteristics, especially adiabatic material parameters. It was also found that optimized lift height and block size can be determined from an appropriate combination of the degree of inner and outer structural restrictions.

  • PDF

An Experimental Study on the Hydration Heat of Concrete Using Phosphate based Inorganic Salt (인산계 무기염을 이용한 콘크리트의 수화 발열 특성에 관한 실험적 연구)

  • Jeong, Seok-Man;Kim, Se-Hwan;Yang, Wan-Hee;Kim, Young-Sun;Ki, Jun-Do;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.6
    • /
    • pp.489-495
    • /
    • 2020
  • Whereas the control of the hydration heat in mass concrete has been important as the concrete structures enlarge, many conventional strategies show some limitations in their effectiveness and practicality. Therefore, In this study, as a solution of controling the heat of hydration of mass concrete, a method to reduce the heat of hydration by controlling the hardening of cement was examined. The reduction of the hydration heat by the developed Phosphate Inorganic Salt was basically verified in the insulated boxes filled with binder paste or concrete mixture. That is, the effects of the Phosphate Inorganic Salt on the hydration heat, flow or slump, and compressive strength were analyzed in binary and ternary blended cement which is generally used for low heat. As a result, the internal maximum temperature rise induced by the hydration heat was decreased by 9.5~10.6% and 10.1~11.7% for binder paste and concrete mixed with the Phosphate Inorganic Salt, respectively. Besides, the delay of the time corresponding to the peak temperature was apparently observed, which is beneficial to the emission of the internal hydration heat in real structures. The Phosphate Inorganic Salt that was developed and verified by a series of the aforementioned experiments showed better performance than the existing ones in terms of the control of the hydration heat and other performance. It can be used for the purpose of hydration heat of mass concrete in the future.

Analysis of hydration of ultra high performance concrete (초고성능 콘크리트의 수화모델에 대한 연구)

  • Wang, Hai-Long;Wang, Xiao-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.13-14
    • /
    • 2014
  • Ultra high performance concrete (UHPC) consists of cement, silica fume (SF), sand, fibers, water and superplasticizer. Typical water/binder-ratios are 0.15-0.20 with 20-30% of silica fume. The development off properties of hardening UHPC relates with both hydration of cement and pozzolanic reaction of silicafume. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of UHPC. The degree of hydration of cement and degree of reaction of silica fume are obtained as accompanied results from the proposed hydration model. The properties of hardening UHPC, such as degree of hydration of cement, calcium hydroxide contents, and compressive strength, are predicted from the contribution of cement hydration and pozzolanic reaction. The proposed model is verified through experimental data on concrete with different water-to-binder ratios and silica fume substitution ratios.

  • PDF

A Case Study on Field Construction of Cold Weather Mass Concreting Using Double Bubble Sheets and Hydration Heat Difference Method (이중 버블시트 및 수화발열량차 공법에 의한 한중매스콘크리트의 현장적용 연구)

  • Kim Jong;Yoon Jae-Ryung;Jeon Chung-Keun;Shin Dong-An;Oh Seon-Gyo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.15-18
    • /
    • 2006
  • The test result of mat concrete applying both hydration heat difference and insulation curing method on new construction of Cheongju university educational building are summarized as following. Both fresh concrete and compressive strength properties were satisfied In aimed value. Setting time of concrete incorporating 15% of fly ash(FA) retarded 1.2 hour than control concrete. Temperature history of mali concrete indicated that the highest temperature of center was exhibited at $126^{\circ}C$ after 51 hours while the highest temperature of upper section was $10.6^{\circ}C$ after 46 hours. Temperature Difference between center and surface was managed at less than $6^{\circ}C$ during whole curing period. In addition the temperature of upper section secured more than $3.3^{\circ}C$ while the temperature of outside was indicated at less than $-10^{\circ}C$. Maturity by parts of construction secured more than $30^{\circ}C$ DD higher than outside at 3 days. The more number of times, applying insulation curing method by double bubble sheets, increased, the higher economic effect was secured. Overall it was clear that applying both double bubble sheets and hydration heat difference method on this new construction can resist hydration heat crack, early frost demage and strength decrease. It also significantly contributed quality improvement of cold weather concreting

  • PDF

An Experimental Study on Hydration Heat Characteristics for Thermal Crack Analysis Based on FEM of Urea Mixed Mass Concrete (Urea 혼입 매스콘크리트의 FEM 온도균열 해석을 위한 수화발열특성에 관한 실험적 연구)

  • Mun, Dong-Hwan;Jang, Hyun-O;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.36-37
    • /
    • 2019
  • In domestic construction industry progress, construction and quality control of large structures are considered to be important as the superstructure and mass scale of structures. In the case of mass concrete, high hydration heat caused by cement hydration generates temperature stress by generating internal temperature difference with the concrete surface. These temperature stresses cause cracks to penetrate the concrete structure. A method of lowering the heat generation by incorporating Urea in order to reduce the concrete temperature crack has been proposed. In this study, the heat function coefficient for the FEM temperature crack analysis of the mass concrete containing the element was derived and the adiabatic temperature rise test was carried out according to the incorporation of the element. As a result of this experiment, the maximum temperature of 41 ± 1℃ was obtained irrespective of the amount of urea, and the maximum temperature decreased by 16.9℃ in concrete containing 40kg/㎥ of urea.

  • PDF

Temperature History of Mock-up Mass Concrete Considering Different Heat Generation Due to Mixture Adjustment (수화발열량이 다른 콘크리트조합 모의부재 매스콘크리트의 온도이력 특성)

  • Kim Jong;Jeon Chung-Keun;Shin Dong-An;Yoon Gi-Won;Oh Seon-Kyo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.9-12
    • /
    • 2005
  • This paper investigated the temperature history of mass concrete mock up structure considering different heat generation by varying with mixture proportion. Setting time difference between high early strength mixture (E-P) and retarding mixture (R-F30) was 14.5hours. Incorporation of $30\%$ of fly ash contributed to $10^{\circ}C$ of hydration heat reduction. In generally used C and D combination, bottom concrete shows earlier hydration, while E-J combination showed reverse tendency and thus, this method can reduce the crack occurrence. Therefore, heat generation difference method has beneficial effect on reducing crack induced by hydration heat resulting from heat generation difference between surface and center section.

  • PDF

Thermo-mechanical behavior of prestressed concrete box girder at hydration age

  • Zhang, Gang;Zhu, Meichun;He, Shuanhai;Hou, Wei
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.529-537
    • /
    • 2017
  • Excessively elevated temperature can lead to cracks in prestressed concrete (PC) continuous bridge with box girder on the pier top at cement hydration age. This paper presents a case study for evaluating the behavior of PC box girder during the early hydration age using a two-stage computational model, in the form of computer program ANSYS, namely, 3-D temperature evaluation and determination of mechanical response in PC box girders. A numerical model considering time-dependent wind speed and ambient temperature in ANSYS for tracing the thermal and mechanical response of box girder is developed. The predicted results were compared to show good agreement with the measured data from the PC box girder of the Zhaoshi Bridge in China. Then, based on the validated numerical model three parameters were incorporated to analyze the evolution of the temperature and stress within box girder caused by cement hydration heat. The results of case study indicate that the wind speed can change the degradation history of temperature and stress and reduce peak value of them. The initial casting temperature of concrete is the most significant parameter which controls cracking of PC box girder on pier top at cement hydration age. Increasing the curing temperature is detrimental to prevent cracking.

Reducing Hydration Heat of Mass Concrete by Applying Combination of Powdered Materials and CGS as Fine Aggregate (분체계 재료조합 및 석탄 가스화 용융 슬래그를 잔골재로 활용한 매스 콘크리트 수화열 저감)

  • Park, Sang-Won;Han, Jun-Hiu;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.169-180
    • /
    • 2024
  • In this study, to suggest an efficient method of using coal gasification slag(CGS), a byproduct from integrated gasification combined cycle(IGCC), as a combined fine aggregate for concrete mixture, the diverse performances of concrete mixtures with combined fine aggregates of CGS, river sand, and crushed sand were evaluated. Additionally, using CGS, the reduction of the hydration heat and the strength developing performance were analyzed to provide a method for reducing the heat of hydration of mass concrete by using combined fine aggregate with CGS and replacing fly ash with cement. The results of the study can be summarized as follows: as a method of recycling CGS from IGCC as concrete fine aggregate, a combination of CGS with crushed sand offers advantages for the concrete mixture. Additionally, when the CGS combined aggregate is used with low-heat-mix designed concrete with fly ash, it has the synergistic effect of reducing the hydration heat of mass concrete compared to the low-heat-designed concrete mixture currently in wide use.

Finite Element Analysis on Heat of Hydration with Reinforcing Steel Bars (철근의 영향을 고려한 수화열 유한요소해석)

  • Yoon Dong-Yong;Yang Ok-Bin;Min Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.43-49
    • /
    • 2005
  • In the concrete structures, the magnitude and distribution of the temperature due to the heat of hydration are related to the thermal properties of each component composed of the concrete, the initial temperature, the type of formwork, and the ambient temperature of exposed surfaces. Even though the reinforcing steel bar has completely different thermal properties, it has been excluded. In the thermal analysis on the concrete structures. In this study, finite element analysis was performed on the concrete structures including the reinforcing steel in order to investigate their effect on temperature and stress distribution due to the heat of hydration. As the steel ratio increased, the maximum temperature and the internal-external temperature difference decreased by 32.5% and 10%, respectively. It is clear that the inclusion of reinforcing steel bars on the heat of hydration analysis is indispensable to obtain realistic solutions for the prediction of the maximum temperature and stresses

Mock-up Test of Low Heat Concrete Using High Volume Mineral Admixture (혼화재를 다량 사용한 저발열 콘크리트의 모의부재실험)

  • Kim, Yong-Ro;Song, Young-Chan;Kim, Hyo-Rak;Park, Jong-Ho;Yoo, Jung-Hoon;Jeong, Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05b
    • /
    • pp.31-34
    • /
    • 2011
  • In this study, for the evaluation of field application of low heat concrete using high volume mineral admixture, the characteristics of hydration heat generation and engineering properties of low heat concrete was investigated by mock-up test according to the replacement ratio of mineral admixture. Also, it was evaluated the compressive strength of low heat concrete with curing temperatures and ages for effective concrete mix design considering seasonal change.

  • PDF