• Title/Summary/Keyword: heat of hydration,

Search Result 712, Processing Time 0.028 seconds

An Experimental Study on Reduction of Working Period of Concrete using High Early Strength Binder (조강형 결합재를 사용한 콘크리트의 공기단축에 관한 실험적 연구)

  • Kim, Dong-Jin;Kim, Min-Jeong;Lee, Sang-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.513-516
    • /
    • 2008
  • Recently, a demand for reduction of construction cost by reducing construction period is increasing because of the slump of the construction business, the increasing price of raw-materials and the enforcement of after-sale system. As a method of reducing construction period, many construction companies usually apply a method of reducing curing period. But if they use an existing early strength cement or admixture, they spend a heavy cost on materials and there are many problems, such as a heat of hydration and a loss of workability. The purpose of this research is a reduction of construction cost by reducing construction period as a earlier removal time of form. To check up application of concrete using high early strength binder and admixture, comparative tests were carried out with concrete using an existing early strength cement or admixture such as tests of diurnal variation, setting time and compressive strength.

  • PDF

The Effect of C12A7 and OH Group on the Formation of C3A by Sol-Gel Method (졸-겔법을 이용한 C3A의 생성에 미치는 C12A7과 OH기의 영향)

  • Kim, Jang-Hwan;Rhee, Jhun;Han, Ki-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.1
    • /
    • pp.70-76
    • /
    • 1987
  • The effect of C12A7 and OH group on the synthesis of C3A by the sol-gel process using aluminum-sec-butoxide and calcium nitrate was studied. C3A by sol-gel method was compared with C3A obtained by the conventional method with respect to their reactivity of formation and crystal size. The sol-gel process for initial formation of C12A7 and C3A at lower temperature (1100, 1200$^{\circ}C$) was superior, but that for complete crystallization of C3A at higher temperature (1300, 1400$^{\circ}C$) was inferior to oxide mixture process. When heat treated under the atmosphere oxygen-free dried nitrogen eliminate the influence of OH group in C12A7, the reactivity of C3A from sol-gel sample incorporated OH group were poor, whereas that from oxide mixture sample showed remarkable effect. The poor crystallization of C3A at higher temperature is presumed to be due to the fact that incorporated OH group in C12A7 formed at lowr temperature might interrupt the diffusion of CaO to C12A7 to from C3A. The crystal size and the hydration characteristics of both C3A obtained by different processes exhibited almost the same results.

  • PDF

Durability Evaluation of High-Performance, Low-Heat Self-Compacting Concrete for Foundation of Tall Buildings (초고층 건축물 매트 기초용 고성능 콘크리트 내구성 평가)

  • Kim, Young-Bong;Park, Dong-Cheon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.5
    • /
    • pp.425-430
    • /
    • 2022
  • Concrete used for the foundation of high-rise buildings is often placed through in an integrated pouring to ensure construction efficiency and quality. However, if concrete is placed integrally, there is a high risk of temperature cracking during the hydration reaction, and it is necessary to determine the optimal mixing design of high-performance, high-durable concrete through the replacement of the admixture. In this study, experiments on salt damage, carbonation, and sulfate were conducted on the specimen manufactured from the optimal high-performance low-heating concrete combination determined in the author's previous study. The resistance of the cement matrix to chlorine ion diffusion coefficient, carbonation coefficient, and sulfate was quantitatively evaluated. In the terms of compression strength, it was measured as 141% compared to the structural design standard of KCI at 91 days. Excellent durability was expressed in carbonation and chlorine ion diffusivity performance evaluation. In particular, the chlorine ion diffusion coefficient, which should be considered the most strictly in the marine environment, was measured at a value of 4.09×E-12m2/y(1.2898×E-10m2/s), and is expected to be used as a material property value in salt damage durability analysis. These results confirmed that the latent hydroponics were due to mixing of the admixture and high resistance was due to the pozzolane reaction.

Investigation on Factors Influencing Creep Prediction and Proposal of Creep Prediction Model Considering Concrete Mixture in the Domestic Construction Field (크리프 예측 영향요인 검토 및 국내 건설현장 콘크리트 배합을 고려한 크리프 예측 모델식 제안)

  • Moon, Hyung-Jae;Seok, Won-Kyun;Koo, Kyung-Mo;Lee, Sang-Kyu;Hwang, Eui-Chul;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.6
    • /
    • pp.503-510
    • /
    • 2019
  • Recently, construction technology of RC structures must be examined for creep in concrete. The factors affecting the creep prediction of concrete and the results of creep in domestic construction field were reviewed. The longer the creep test period and the higher the compressive strength, the higher the creep prediction accuracy. The higher the curing temperature, the higher the initial strength development of the concrete, but the difference in the creep coefficients increased over time. Based on the results of creep evaluation in the domestic construction field and lab. tests, a modified predictive model that complements the ACI-209 model was proposed. In the creep prediction of real members using general to high strength concrete, the test period and temperature should be considered precisely.

A Study on the Concrete Durability by Fly Ash Replacement Ratio (플라이애쉬 치환율을 고려한 콘크리트의 내구성에 관한 연구)

  • Kim, Dongbaek;Lee, Kwangjae
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.4
    • /
    • pp.566-571
    • /
    • 2014
  • Recently, with concentrated social and engineering interests on durability, diversified subsequent researches have been progressed. The Chloride-induced corrosion, carbonation, freeze-thaw etc, deterioration factors of concrete act to concrete not privately but complexly, Fly ash is most frequently used admixture which is using a reduction method of deterioration. And the fly ash effects on improvement of durability with enhancement of fluidity, decrease of crack with reduction of hydration heat, promotion of long-age strength and have a economic advantage which replaces cement as a binding material. But, fly ash have different qualities and occasionally reduce the durability and strength by adhesion of AE admixture with unburned carbon powder etc. In this study, the experiments will take about various replacement ratio of fly ash concrete, and will analyze, consider the results, after these will verify applicability and validity as admixture and binding material.

Investigation on the Characteristics of Interfacial Transition Zone (ITZ) of High-Strength Cement Mortar Incorporating Graphene Oxide (그래핀 옥사이드 혼입 고강도 시멘트 모르타르의 Interfacial Transition Zone (ITZ) 특성에 관한 연구)

  • Im, Su-Min;Cho, Seong-Min;Liu, Jun-Xing;Lim, Seungmin;Bae, Sung-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.343-350
    • /
    • 2022
  • In recent years, nanomaterials, such as nano-silica, carbon nanotubes, and graphene oxide (GO), have been suggested to improve the properties of the interfacial transition zone (ITZ) between aggregates and cement pastes, which has most adversely affected the strength of quasi-brittle concrete. Among the nanomaterials, GO with superior dispersibility has been reported to be effective in improving the properties of ITZ of normal-strength concrete by forming interfacial chemical bonds with Ca2+ ions abundant in ITZ. In this study, the effect of GO on the properties of ITZ in the high-strength mortar was elucidated by calculating the change in hydration heat release, ITZ thickness, and the porosity around ISO sand, which was obtained with isothermal calorimetry tests and scanning electron microscope image analysis, respectively.

Shrinkage Properties of High Performance Concrete Used Expansive Additive and Shrinkage Reducing Agent (팽창재와 수축저감제를 사용한 고성능 콘크리트의 수축 특성)

  • Koh, Kyung Taek;Park, Jung Jun;Ryu, Gum Sung;Kang, Su Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.787-794
    • /
    • 2006
  • Generally, high performance concrete has characteristics such as low water-cementitious material ratio, lots of unit binder powder, thus the heat of hydration, autogenous shrinkage are tend to be increased. This study is to investigated the effect of the expansive additive and shrinkage reducing agent on the shrinkage properties of high performance concrete as a study to develop the reduction technology of the concrete shrinkage. Test results showed that the expansive additive and shrinkage reducing agent were effective the reduction of shrinkage of high performance concrete. Especially, the using method in combination with expansive additive and shrinkage reducing agent was more effective than the separately using method of that. Also, it analyzed that the combination of expansive additive of 5% and shrinkage reducing agent of 1% was the most suitable mixture, considering to the fluidity, strength and shrinkage properties.

Variation of Bilinear Stress-Crack Opening Relation for Tensile Cracking of Concrete at Early Ages (초기재령에서 콘크리트 인장균열에 대한 쌍선형 응력-균열 개구 관계의 변화)

  • Kwon, Seung-Hee;Choi, Kang;Lee, Yun;Park, Hong-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.427-435
    • /
    • 2010
  • One of the most vulnerable properties in concrete is tensile cracking, which usually happens at early ages due to hydration heat and shrinkage. In order to accurately predict the early age cracking, it needs to find out how stress-crack opening relation is varying over time. In this study, inverse analyses were performed with the existing experimental data for wedge-splitting tests, and the parameters of the softening curve for the stress-crack opening relation were determined from the best fits of the measured load-CMOD curves. Based on the optimized softening curve, variation of fracture energy over time was first examined, and a model for the stress-crack opening relation at early ages was suggested considering the found feature of the fracture energy. The model was verified by comparisons of the peak loads, CMODs at peak loads, and fracture energies obtained from the experiments and the inverse analysis.

A Study on the Mix Design and Quality Factors of the Combined High Flowing Concrete Using High Belite Cement

  • Kwon, Yeong-Ho
    • KCI Concrete Journal
    • /
    • v.14 no.3
    • /
    • pp.121-129
    • /
    • 2002
  • This study investigates experimentally into the design factors and quality variations having an effect on the properties of the combined high flowing concrete to be poured in the slurry wall of Inchon LNG in-ground receiving terminal. Especially, high belite cement and lime stone powder as cementitious materials and viscosity agent in order to improve self-compaction and hydration heat are used in this study. Water-cement ratio(W/C), fine aggregate volume ratio(Sr) and coarse aggregate volume ratio(Gv) as design factors of the combined high flowing concrete are applied to determine the optimum mix design proportion. Also quality variations for sensitivity test are selected items as followings. (1)Surface moisture(5cases) and (2)Fineness modulus of fine aggregate(5cases), (3)Concrete temperature(3cases), (4)Specific surface(3cases) and particle size of lime stone powder. As experimental results, water-cement ratio, fine and coarse aggregate volume ratio are shown as the optimum range 51%, 43% and 53% separately considering site condition of slurry wall. Also quality factors by sensitivity test should be controlled in the following ranges. (1) Surface moisture :to.67% and (2)Fineness modulus 2.6$\pm$0.2 of fine aggregate, (3)Concrete temperature l0-20t, (4) Specific surface 6,000$\textrm{cm}^2$/g and particle size 9.7$\pm$1.0${\mu}{\textrm}{m}$ of lime stone powder. Based on the results of this study, the optimum mix design proportion of the combined high flowing concrete are selected and poured successfully in the slurry wall of LNG in-ground tank.

  • PDF

A Study on the Chloride Migration Properties of High Durable Marine Concrete Using the Expansion Production Admixture (팽창재를 혼입한 고내구성 해양콘크리트의 염화물 확산특성에 관한 연구)

  • Kim, Kyoung-Min;Ryu, Dong-Woo;Park, Sang-Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.697-700
    • /
    • 2008
  • Recently, high strength, flowability, and durability of concrete were required according to increase of large scale and high rise structure. However, cracks occurred easily on the high performance concrete. In this reason, using expansion agent for reducing shrinkage cracks were increased, but it did not consider on durability of high performance concrete. Accordingly, this study1 investigated the resistance of shrinkage and damage form salt by mixing CSA expansion agent on the blast-furnace slag cement and mixed cement for the low heat of hydration by three components. The cases that 8% of expansion agent was mixed and the proportion was OPC were expanded till 43.7 times compared with control concrete. For the resistance to the damage of salt, it was improved when mixing ratio was incresed and the maximum size of coarse aggregate growed bigger. In this study, the resistance to the damage of salt of the cases that 8% of expansion agent was mixed was improved about 16% compared with control concrete.

  • PDF