• Title/Summary/Keyword: heat of hydration,

Search Result 712, Processing Time 0.023 seconds

A Study on Field Applications of Hydration Heat Control in the Mass Concrete Using Oscillating Capillary Tube Heat Pipe (OCHP를 이용한 매스콘크리트 수화열 제어의 현장적용에 관한 연구)

  • Yum, Chi-Sun;Bae, Won-Mahn;Kim, Myung-Sik;Beak, Dong-Il;Kim, Kang-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.413-416
    • /
    • 2006
  • In process of the mass concrete structure, the heat of hydration may cause serious thermal cracking. In order to eliminate hydration heat of mass concrete, this paper reports results of hydration heat control of mass concrete using the Oscillating Capillary tube Heat Pipe(OCHP). There were the several RC box molds which shows a difference as compared with each other. One was not equipped with OCHP. The others were equipped with OCHP. All of them were cooled with natural air convection. The OCHP was composed of copper pipe with 11 turns(outer diameter : 4mm, inner diameter : 2.8mm) and heat type was non-looped type. The working fluid was R-22 and its charging ratio was 40% by volume. The core of the concrete temperature was approximately $55^{\circ}C$ in the winter without OCHP. But the concrete temperature with OCHP was reduced its difference in temperature with the outdoor temperature to $12^{\circ}C$. Finally we saw the index figure of the thermal crack of the structures were varied from 0.75 to 1.47.

  • PDF

Characteristics of Reduction of Hydration Heat through Utilization of Blast Furnace Slag in the Cement-based Landfill Soil Liner System (고로슬래그를 이용한 폐기물 매립지 고화토차수층의 수화열 저감특성)

  • Cho, Jae-Beom;Hyun, Jae-Hyuk;Lee, Jong-Deuk;Park, Joung-Ku
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1327-1331
    • /
    • 2005
  • This study was to investigate the reduction of hydration heat by utilizing industrial by-products such as BFS(Blast Furnace Slag). DM(Dredged Mud) was used by parent soil and Ordinary portland cement was used by cementing material. Additive added to reduce the heat of hydration was BFS. From the results of experiment, hydration heat was decreased in accordance with the addition of BFS. The reason was that surface of BFS coated with aluminosulfate. Initial uniaxial strength was low, neither was not long term uniaxial strength. It was concluded that silica rich layer($H_2SiO_4^{4-}$) in solid phase early in the reaction of hydration was difficultly moved in liquid phase due to the increase of ZP(Zeta Potential). However, the ZP in the later hydration was decreased due to the acceleration of mobility of silica rich layer($H_2SiO_4^{4-}$). Therefore, long term physical properties such as uniaxial strength revealed.

Dispertion Effect of Hydration Heat due to Materials and Standard Variation of Embedded Heat Pipe (매입형 히트파이프의 재질 및 규격변화에 따른 수화열 분산 효과)

  • Kim, Myung-Sik;Yeom, Chi-Sun;Baek, Dong-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.111-116
    • /
    • 2009
  • The cracking due to hydration heat in mass concrete must be resolved to improve the stability and durability of concrete structures. In this study, the economic efficiency was improved by replacing a copper pipe with a steel one for the heat pipe, and the heat pipe was standardized to significantly improve the operation efficiency, such as the processing, transport, assembly, and construction time. As a result of the experiment, the peak temperature of the ICSHP, ISSHP, and ISUHP specimens decreased by about $7.2{\sim}10.9^{\circ}C$ compared to the OPC specimen and the probability of a thermal crack being generated in the ICSHP, ISSHP, and ISUHP specimens decreased by up to 84~88%.

Study on Low Heat Cements (저발열형 시멘트 개발에 관한 연구)

  • Choi, Jae-Woong;Ha, Jae-Dam;Kim, Dong-Seuk;Kim, Ki-Soo;Choi, Long
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.46-51
    • /
    • 1999
  • Mass concrete structures have many critical points in service. The cracks caused by the heat of hydration is the most serious problem, so that many method ot control cracks(precooling, postcooling, etc) have been applied to construction. But cooling methods take high cost and many installation and limits of field. Therefore it is useful to use the low heat hydration cements for low cost. This paper describes the characteristics of a low heat cement mixing the ternary components of cement(portland cement, blast furnace slag, fly ash) recently developed for mass concrete, belite cement, low heat slag cement(belite base) and fly ash cement (belite base). The objective of this paper is to study on low heat cement about initial compressive strength and hydration heat.

  • PDF

Properties of Autogenous Shrinkage according to Hydration Heat Velocity of High Strength Concrete Considering Mass Member (매스부재를 고려한 고강도콘크리트의 수화발열상승속도 조절에 따른 자기수축 특성)

  • Koo, Kyung-Mo;Kim, Gyu-Yong;Hong, Sung-Hyun;Nam, Jeong-Soo;Shin, Kyoung-Su;Khil, Bae-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.369-376
    • /
    • 2012
  • In this study, to reduce the hydration heat velocity (HHV) of high-strength mass concrete at early ages, phase change materials (PCM) that could absorb hydration heat were applied, and the changes in autogenous shrinkage were investigated, as well as the relationship between the hydration temperature and autogenous shrinkage. The acceleration of the cement hydration process by the PCM leads to an early setting and a higher development of the compressive strength and elastic modulus of concrete at very early ages. The function of PCM could be worked below the original melting point due to the eutectic effect, while the hydration temperature and HHV of high-strength mass concrete can be decreased through the use of the PCM. A close relationship was found between the hydration temperature and autogenous shrinkage: the higher the HHV, the greater the ultimate autogenous shrinkage.

Evaluation of Hydration Heat Characteristics of Strontium Based Hydration Heat Reducer Addition on Concrete in Hot Weather Condition (서중환경에서 스트론튬계 수화열저감재를 사용한 콘크리트의 수화발열특성 평가)

  • Suh, Dong-Kyun;Kim, Gyu-Yong;Kil, Bae-Su;Koyama, Tomoyuki;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.189-196
    • /
    • 2020
  • When concrete member become large like in high rise buildings, hydration heat makes temperature difference inside and outside and cause cracks. The method of using latent heat material as heat reducer could be more accessible, usable and efficient than other methods. Therefore, many studies using PCM as heat reducer are being conducted. Since heat reducer have different reacting temperature, they may be affected by environmental factors like ambient and concrete mixing temperature but studies issuing this are insignificant. Therefore, this paper attempt to evaluate the hydration heat characteristics and quality of concrete using strontium-based PCM under hot weather conditions. As a result, when the strontium-based hydration heat reducer was mixed 3wt.% and 5wt.% in hot weather condition, hydration heat speed and heating rate could be reduced by 8%, 21%, and 75, 85 minutes compared to OPC, respectively. This is considered to be the phase change reaction is relatively promoted when the temperature is high and cause improve performance than room condition result. Later, comparing the efficiency of other types of P.C.M in hot weather condition, and conduct detailed reviews on the strength development in long-term age.

An Experimental Study on the Hydration Heat of Concrete Using Phosphate based Inorganic Salt (인산계 무기염을 이용한 콘크리트의 수화 발열 특성에 관한 실험적 연구)

  • Jeong, Seok-Man;Kim, Se-Hwan;Yang, Wan-Hee;Kim, Young-Sun;Ki, Jun-Do;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.6
    • /
    • pp.489-495
    • /
    • 2020
  • Whereas the control of the hydration heat in mass concrete has been important as the concrete structures enlarge, many conventional strategies show some limitations in their effectiveness and practicality. Therefore, In this study, as a solution of controling the heat of hydration of mass concrete, a method to reduce the heat of hydration by controlling the hardening of cement was examined. The reduction of the hydration heat by the developed Phosphate Inorganic Salt was basically verified in the insulated boxes filled with binder paste or concrete mixture. That is, the effects of the Phosphate Inorganic Salt on the hydration heat, flow or slump, and compressive strength were analyzed in binary and ternary blended cement which is generally used for low heat. As a result, the internal maximum temperature rise induced by the hydration heat was decreased by 9.5~10.6% and 10.1~11.7% for binder paste and concrete mixed with the Phosphate Inorganic Salt, respectively. Besides, the delay of the time corresponding to the peak temperature was apparently observed, which is beneficial to the emission of the internal hydration heat in real structures. The Phosphate Inorganic Salt that was developed and verified by a series of the aforementioned experiments showed better performance than the existing ones in terms of the control of the hydration heat and other performance. It can be used for the purpose of hydration heat of mass concrete in the future.

An Experimental Study on the Properties of Ultra Low Heat Mass Concrete Containing Limestone Powder (석회석미분말을 혼입한 초저발열 매스콘크리트의 특성에 관한 연구)

  • 하재담;김동석;김태홍;이종열;권영호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1175-1180
    • /
    • 2000
  • Recently, the crack of concrete induced by the heat of hydration of cement is a serious problem for more greater, special and higher strength of concrete structures. The increasing concrete's temperature is mainly caused by the heat of hydration of cement and so, to control the thermal stress of concrete structure is desirable to use low heater material of hydration. There are many methods to diminish the increasing of concrete temperature such as using of low heat cement, addition of fly-ash, application of pre-cooling, etc., and in this study, we evaluate the heating and mechanical properties of ultra low heat mass concrete using Low Heat Portland(KS Type IV) cement with 30% of limestone powder. The results of this study will be applied to side wall and bottom of No. 15 and 16 of underground LNG tank in Inchon.

Generation of Hydration Heat of the Concrete Combined Coarse Particle Cement and Blast Furnace Slag (조분 시멘트와 고로슬래그를 조합 사용한 콘크리트의 수화발열 특성)

  • Noh, Sang-Kyun;Baek, Dae-Hyun;Jang, Duk-Bae;Kim, Young-Pil;Cha, Wan-Ho;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.61-65
    • /
    • 2008
  • This study, having combined and displaced blast furnace slag("BS" hereinafter) known as admixture material that delays hydration reaction with coarse particle cement("CC" hereinafter) collected in particle classification method during ordinary portland cement("OPC" hereinafter), reviewed the hydration heat characteristics affecting the concrete. To reduce hydration heat, the study plain-mixed which used 100% OPC for W/B 50% level 1, displaced CC at level 3 of 25%, 50% and 75% for OPC, and by displacing BS with admixture material at level 5 of 0%, 20%, 40%, 60% and 80% for cement(OPC+CC), experimented totally 16 batches. As a result of experiment, in the case of flow, the more CC displacement rate increased, the more it tended to decrease, and the more BS displacement rate increased, the more it decreased. Also, as for simple adiabatic temperature rise by the CC and BS displacement rates, it decreased as displacement rate increased, and particularly in the case of displaced BS of 80%, It showed temperature reduction effect of about 63% companing with plain. Compressive strength decreased in proportion to displacement rate, however strength reduction increment was shown to decrease with age progress.

  • PDF

Effect of the Fineness on the Properties of Portland Cement (분발도가 포틀랜드 시멘트의 물성에 미치는 영향)

  • 송종택;김재영;전준영
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.77-81
    • /
    • 1999
  • In order to investigate the effect of fineness on the properties of Portland cement, we prepared five kinds of portland cements with different Blaine values(2300, 2500, 3000, 3500, 45oo $\textrm{cm}^2$/g) and measured Ca(OH)2 analysis, hydration heat, the fluidity and the physical properties of them. According to the results, as the Blain value of cement is lower, the rate of hydration is delayed, and the hydration heat and the compressive strength are decreased. But the fluidity of cement paste is improved. Especially, the hydration heat of the cement with 2500$\textrm{cm}^2$/g of Blaine value is decreased about 15% compared with 3500 $\textrm{cm}^2$/g cement.

  • PDF