• Title/Summary/Keyword: heat of fusion

Search Result 447, Processing Time 0.027 seconds

Development of Multi-purpose Smart Sensor Using Presence Sensor (재실 감지 센서를 이용한 다용도 스마트 센서 개발)

  • Cha, Joo-Heon;Yong, Heong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.103-109
    • /
    • 2015
  • This paper introduces a multi-purpose smart fusion sensor. Normally, this type of sensor can contribute to energy savings specifically related to lighting and heating/air conditioning systems by detecting individuals in an office building. If a fire occurs, the sensor can provide information regarding the presence and location of residents in the building to a management center. The system consists of four sensors: a thermopile sensor for detecting heat energy, an ultrasonic sensor for measuring the distance of objects from the sensor, a fire detection sensor, and a passive infrared sensor for detecting temperature change. The system has a wireless communication module to provide the management center with control information for lighting and heating/air conditioning systems. We have also demonstrated the usefulness of the proposed system by applying it to a real environment.

Physicochemical Changes in UV-Exposed Low-Density Polyethylene Films

  • Salem, M.A.;Farouk, H.;Kashif, I.
    • Macromolecular Research
    • /
    • v.10 no.3
    • /
    • pp.168-173
    • /
    • 2002
  • Unstabilized low-density polyethylene (LDPE) films and films formulated with hindered amine light stabilizer (HALS) were exposed to UV-radiation; and the physicochemical changes during photooxidation processes have been investigated using tensile, FTIR spectre-photometric and thermal analytical (DSC) techniques. The dependence of tensile properties (elongation- and stress-at-break), carboxyl index and heat of fusion on UV-irradiation time have been discussed. The use of HALS is found to be effective in maintaining the UV-mechanical properties of the LDPE films. The experimental results showed that there exists no correlation between mechanical properties and carbonyl index, whereas crystallinity correlates well with carbonyl index in unstabilized and stabilized films for irradiation times greater than 100 h. The rate of formation of carbonyl groups is found to be dependent on UV exposure time. Crystallinity of the film samples is strongly influenced by both exposure time and presence of HALS.

The Effects of TiN Particles on the HAZ Microstructure and Toughness in High Nitrogen TiN Steel

  • Jeong, H.C.;An, Y.H.;Choo, W.Y.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.25-28
    • /
    • 2002
  • In the coarse grain HAZ adjacent to the fusion line, most of the TiN particles in conventional Ti added steel are dissolved and austenite grain growth is easily occurred during welding process. To avoid this difficulty, thermal stability of TiN particle is improved by increasing the nitrogen content in steel. In this study, the effect of hlgh nitrogen TiN particle on preventing austenite grain growth in HAZ was investigated. Increased thermal stability of TiN particle is helpful for preventing the austenite grain growth by pinning effect. High nitrogen TiN particle in simulated HAZ were not dissolved even at high temperature such as 1400'E and prevented the austenite grain growth in simulated HAZ. Owing to small austenite grain size in HAZ the width of coarse grain HAZ in high nitrogen TiN steel was decreased to 1/10 of conventional TiN steel. Even high heat input welding, the microstructure of coarse grain HAZ consisted of fine polygonal ferrite and pearlite and toughness of coarse grain HAZ was significantly improved.

  • PDF

Semi-Solid Forming of Al-Zn-Mg-Cu Alloy Applying Low-Temperature Casting Process (저온 주조법을 응용한 Al-Zn-Mg-Cu 합금의 반응고 성형)

  • Kim, Jeong-Min;Kim, Ki-Tae;Jung, Woon-Jae
    • Journal of Korea Foundry Society
    • /
    • v.22 no.2
    • /
    • pp.82-88
    • /
    • 2002
  • Al-5.5Zn-2.5Mg-l.5Cu semi-solid slurry was prepared by cooling the liquid metal with a low superheat to a solid and liquid co-existing temperature. Relatively round solid particles could be obtained in the slurry through the simple process. The prepared slurry was deformed into the metallic mold by a press and the mechanical properties of obtained specimens were investigated. Mold filling ability of the alloy slurry was also investigated and compared with that of A356 alloy. Al-Zn-Mg-Cu alloy showed lower mold filling ability than A356 alloy probably because small amount of eutectic phase is present and the heat of fusion generated during solidification is smaller than that of A356 alloy.

Synthesis and electromagnetic properties of FeNi alloy nanofibers using an electrospinning method

  • Lee, Young-In;Choa, Yong-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.5
    • /
    • pp.218-222
    • /
    • 2012
  • FeNi alloy nanofibers have been prepared by an electrospinning process followed by air-calcination and H2 reduction to develop electromagnetic (EM) wave absorbers in the giga-hertz (GHz) frequency range. The thermal behavior and phase and morphology evolution in the synthetic processes were systematically investigated. Through the heat treatments of calcination and H2 reduction, as-spun PVP/FeNi precursor nanofiber has been stepwise transformed into nickel iron oxide and FeNi phases but the fibrous shape was maintained perfectly. The FeNi alloy nanofiber had the high aspect ratio and the average diameter of approximately 190 nm and primarily composed of FeNi nanocrystals with an average diameter of ~60 nm. The FeNi alloy nanofibers could be used for excellent EM wave absorbing materials in the GHz frequency range because the power loss of the FeNi nanofibers increased up to 20 GHz without a degradation and exhibited the superior EM wave absorption properties compared to commercial FeNi nanoparticles.

Crystallization-induced Sequential Reordering in Poly (trimethylene to rephthalate)/Polycarbonate Blends

  • Bae, Woo-Jin;Jo, Won-Ho;Park, Yeun-Hum
    • Macromolecular Research
    • /
    • v.10 no.3
    • /
    • pp.145-149
    • /
    • 2002
  • Transesterification between poly(trimethylene terephthalate) (PTT) and bisphenol-A-polycarbonate (PC) is studied by differential scanning calorimetry (DSC) and nuclear magnetic resonance (NMR) spectroscopy. When the blend of PTT/PC is annealed at higher temperatures, the samples do not show any melting peak at an initial stage, indicating the samples completely lose their crystallinity due to the formation of random copolymers. However, when the random copolymer is annealed at temperatures lower than the melting temperature of PTT, a melting peak is observed, indicating that the random copolymers are sequentially reordered. The melting point and the heat of fusion of crystals formed from the crystallization-induced sequential reordering depend upon the annealing temperature and time. The average sequence length determined from NMR is increased as the blocks are regenerated.

Ramp-rate limitation of CIC(Cable-In-Conduit) superconducting magnet (관내권선(Cable-In-Conduit, CIC) 초전도 자석(Superconducting magnet)에서의 한계 자속 변화(ramp-rate limitation) 현상)

  • Jeong, Sang-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.37-40
    • /
    • 1996
  • Cable-In-Conduit Conductor(CICC) is widely accepted as an advanced superconductor configuration for large scale applications such as tokamak fusion reactors, MAGLEV (MAGnetic LEVitation), and SMES (Superconducting Magnetic Energy Storage). The stability of CICC cooled with supercritical helium can be very high if it is operated below a certain limiting current. This limiting current can be determined by Stekly type heat balance equation. The stability characteristic of CICC for AC operation is more complicated than that of DC because there are additional instability sources which are associated with local flux change. Ramp-rate limitation is a phenomenon discovered during US-DPC (United States-Demonstration Poloidal Coil) program, which showed apparent quench current degradation associated with high dB/dt. This paper describes recent experimental investigation results on the ramp-rate limitation and discusses current imbalance, induced current, current redistribution due to local quench of the strand in the cable.

  • PDF

The Effect of Strength by Changing Tool Shape in the Friction Stir Welding (마찰교반용접에서 툴의 형상이 접합부 강도에 미치는 영향에 관한 연구)

  • Chun, Chang-Keun;Kim, Hyeong-Ju;Park, In-Gyu;Umm, Kyung-Su;Chang, Woong-Seong
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1613-1617
    • /
    • 2009
  • As demand regarding a recent energy-saving rises, the using ratio of the aluminum plate in manufacturing of a railroad vehicle has been increasing. The aluminum structure to be applied to a railroad vehicle is divided to single skin and double skin, and the main aluminum product is mainly Al 6005 extrude and Al 5083 rolled in domestic market. The Al 6005 alloy is applied heat treatment in order to improve the strength of material. Therefore there is the disadvantage that the strength of welding zone decreases compare with base material's if you apply to fusion welding like MIG(metal inert gas) welding. In this paper we tried to apply friction stir welding to solve these problems. In this study we investigated how tensile strength and fatigue strength were changed in case of changing the shoulder diameter of thread tool.

  • PDF

Welding Residual Stress and Strength of Thick 9% Nickel Steel Plate (9% 니켈강 후판 용접부의 강도 및 잔류응력)

  • Kim, Young-Kyun;Kim, Young-Wann;Kim, Jae-Hoon
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.85-90
    • /
    • 2014
  • In this paper, the transient thermal and residual stress analysis of the welding of 9% Ni steel plates using the FEA software ABAQUS are presented. The 9% Ni steel plates are welded manually with welding consumables of 70% Ni based Inconel type super-alloys (YAWATA WELD B (M)), producing a multi-pass/multi-layer butt weld. For these materials, temperature dependant mechanical and thermal material properties are used in the analysis. The back gouging is considered in welding process simulation. The FE thermal results are validated by comparing the real fusion profile and heat affected zone (HAZ). In addition, the continuous indentation test was conducted to measure the strength of base metal, HAZ and weld metal.

Porosity Reduction in Laser Welding of Nitrided Carbon Steel (질화처리된 저탄소강 레이저 용접부의 기공 감소)

  • Ahn, Young-Nam;Kim, Cheolhee;Lee, Wonbeom;Kim, Jeonhan
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.71-76
    • /
    • 2013
  • Gas nitriding is a surface hardening process where nitrogen is introduced into the surface of a ferrous alloy. During fusion welding of nitrided carbon steel, the nitride inside weld metal is dissolved and generates nitrogen gas, which causes porosities - blow holes and pits. In this study, several laser welding processes such as weaving welding, two-pass welding, dual beam welding and laser-arc hybrid welding were investigated to elongate the weld pool to enhance nitrogen gas evacuation. The surface pits were successfully eliminated with elongated weld pool. However blowholes inside the weld metal were effective reduced but not fully disappeared.