• Title/Summary/Keyword: heat loss reduction

Search Result 182, Processing Time 0.026 seconds

The Effect of Gasket Shape and Material Properties on Heat Losses in a Refrigerator (냉장고 가스켓 주위 형상 및 물성치 변화에 의한 열손실 영향 연구)

  • Ha, Ji-Soo;Jung, Kwang-Soo;Kim, Tae-Kwon;Shim, Jae-Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.6
    • /
    • pp.413-418
    • /
    • 2010
  • The amount of heat loss of a refrigerator through the gasket is nearly 30% of total refrigerator heat loss. In this paper, quantitative evaluation for the effects of various effort to reduce heat losses through the gasket. The first trial is to extend the inner gasket to prevent the heat loss flowing from the inner of refrigerator. The effects of thermal conductivity changes of gasket and magnet are investigated by the numerical heat transfer analysis. The position change of hot line is also examined in the present research. From the present result of the numerical simulation of heat transfer, we are able to reduce the heat loss about 20~40% by using inner gasket extension. The reducing of thermal conductivity of gasket is considerable in the heat loss reduction. On the other hand, the thermal conductivity change of magnet has no apparent effect in heat loss reduction. The position change of hot line has considerable positive effect in the reduction of heat loss near gasket region.

The Effect on Heat Loss Reduction in a refrigeration with the Variation of Gasket Shape (냉장고 가스켓 형상 변화에 따른 냉장고 열손실 저감 효과)

  • Ha, Ji-Soo;Jung, Kwang-Soo;Kim, Tae-Kwon;Kim, Kyung-Ho;Jeong, Gwan-Sik;Kim, Seok-Ro
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.286-291
    • /
    • 2008
  • Insulation of refrigerator with gasket material near door becomes the technical point at the aspect of heat loss and energy efficiency. Heat loss of refrigerator through the gasket is nearly 30%. In this paper, quantitative evaluation method of heat loss through gasket in established suggest the method for the improvement of heat loss. To analyze the heat transfer, we have used the common software Fluent that is used to CFD. Because of using the convection coefficient of heat transfer, we have solved only the equation of energy for heat transfer. As a result, we have known that heat loss flows through the heat flux vector and that the heat gathered out of the outside iron plate is transferred inner part through the gasket and ABS, etc. Through the result of the numerical simulation that use sub-gasket, we have known that we are able to reduce the heat loss about $20{\sim}40%$. when we applied that sub-gasket on a real refrigerator, the power consumption had reduced about 4.76%. In addition, when we applied a more improved sub-gasket on a real refrigerator and measured the power of the refrigerator the power consumption does reduce about 3% and we will try to apply the improved sub-gasket on a new models of refrigerator.

  • PDF

A Study on the Heat Loss Reduction of a Refrigerator by Thermal Conductivity Change and Partial Removal of Rubber Magnet (냉장고 가스켓 주위 고무자석 재질 및 형상 변경에 따른 열손실 개선 연구)

  • Ha, Ji Soo;Ahn, Won Sul
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.240-246
    • /
    • 2014
  • The present study has been carried out to reduce the heat loss from a refrigerator by changing thermal conductivity and partial removal of rubber magnet near refirgerator gasket. To perform this purpose, two dimensional heat transfer analysis for the horizontal cross sectional plane of a refrigerator has been accomplished. From the present study, it could be seen that the heat loss could be reduced nearly 7% by changing thermal conductivity of rubber magnet from 10W/mK to 1W/mK. The heat loss reduction, 17%, could be achieved by removal of rubber magnet near hotline and the effect on the heat loss reduction by partial removal of rubber magnet might be helpful for the refrigerator power consumption.

A Study on Thermal Satisfaction of Domestic Heat Wave Reduction Facilities (국내 폭염 저감 시설의 온열 만족도에 대한 연구)

  • Jun, Yong-Joon;Park, Lyool;Park, Kyung-Soon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • As abnormal climates occur due to the increase in greenhouse gases at home and abroad, various problems such as human casualties, crop damage, energy depletion, and economic loss due to heat diseases, which are one of the extreme climate phenomena, are following one after another. In response, the government has established the 'Climate Crisis Response Special Committee' since 2018, when it recorded the greatest damage in history due to heat waves, and has been carrying out budget formation and reform of laws and systems every year to respond to heat waves. However, in relation to the heat wave damage reduction facility that is being expanded with a large budget, there is no prior research related to the degree of heat loss due to the use of the facility, the difference in effects between specific groups, and the economic effect that comes back compared to the invested budget. Therefore, from a midto long-term perspective, it is expected that it will be difficult to establish a clear direction for policy making. Therefore, in this study, representative facilities were selected according to the principle of heat reduction among the currently expanded heat damage reduction facilities, and a questionnaire survey was conducted for users of each reduction facility (waterfall, awning, pond, and elastic pavement). Accordingly, the change in the sense of heat according to the use of the heat damage reduction facility was checked, and the change in the sense of heat according to the group characteristics (gender, age, metabolic rate) was analyzed to examine the characteristics of the relationship between the facility and the users.

The Effect of Gasket Shape on Heat Loss Reduction in a Refrigeration (냉장고 가스켓 형상 변화에 따른 냉장고 열손실 저감 효과)

  • Ha, Ji-Soo;Jung, Kwang-Soo;Kim, Tae-Kwon;Kim, Kyung-Ho;Kim, Seok-Ro
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.5
    • /
    • pp.305-310
    • /
    • 2009
  • The amount of heat loss of a refrigerator through the gasket is nearly 30% of total refrigerator heat loss. In this paper, quantitative evaluation analysis of heat loss through gasket is established with numerical heat transfer analysis. Extending the gasket shape to protect the heat loss from the gasket, power consumption is measured by using real refrigerator in a temperature and humidity chamber and suggest the gasket shape to reduce the heat loss. From the present result of the numerical simulation of heat transfer and experiment with varying gasket shape, we are able to reduce the heat loss about 20-40% by using extended gasket and the power consumption can be reduced about 5%.

A Study on the Radiation Heat Transfer Effect near a Refrigerator Gasket (냉장고 가스켓 주위의 복사열전달 효과에 관한 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1605-1610
    • /
    • 2015
  • The present study has been accomplished to elucidate the effect of radiation heat transfer in the heat transfer analysis of refrigerator gasket, which has near 30% of refrigerator heat loss. The numerical heat transfer analysis has been conducted with the simplified modeling of refrigerator gasket. From the present CFD analysis, heat loss at the gasket is $25.6W/m^2$ for the case without radiation effect and that for the case with radiation effect is $55.0W/m^2$, which is 2.2 times greater heat loss. The radiation protection layers were installed in the gasket from 0 to 7 and the case with 7 layers has 33% reduction effect of heat loss compared with the case without any radiation protection layer. Additionally, it is better effect of radiation heat loss reduction that the radiation protection layers would be placed to the outer or inner side of gasket rather than placing to the center of gasket.

Development of an Engineering Model of Hydrogen-Fueled Ultra-micro Combustor for UMGT

  • Shimotori, Shoko;Yuasa, Saburo;Sakurai, Takashi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.828-836
    • /
    • 2008
  • To develop an engineering-model of hydrogen-fueled ultra-micro combustor for Ultra Micro Gas Turbine(UMGT), we reviewed and summarized the problems in downsizing combustors, and determined a suitable burning method. The key issue to actualize practical ultra-micro combustors is reducing heat loss from the combustor to compressor and turbine. The reduction of heat loss was discussed from 3 different viewpoints; heat-insulation material, high-space-heating-rate combustion, and combustor-insolated gas turbine structure. Use of heat-insulation material induced the heat loss reduction to the surroundings. The heat loss ratio decreased substantially in reverse proportion to space heating rate, leading the idea that it could be reduced by burning at a high space heating rate. By settling the combustor insolated from the compressor and turbine, the heat transfer from the combustor to the compressor and turbine becomes smaller. For a selection of the suitable burning method, comparison between 2 burning methods, flat-flame and swirling-flamer types, was conducted. Synthetically the flat-flame burning method was confirmed to be more suitable for ultra-micro combustors than latter one. Base on them, an engineering-model of hydrogen-fueled flat-flame ultra-micro combustor was developed. To obtain high overall heat-insulation, heat-resistant and strength, the engineering-model combustor had triple layer structure with an advanced ceramic, a heat insulation material and a stainless steel. To simplify heat transfer issue in the combustor, it was isolated from the other components. Furthermore it was designed by considering structure, size, material, velocity, pressure loss and prevention of flashback.

  • PDF

The Analysis on Exergy Loss and its Reduction Methods in Steam Desuperheating and Depressurizing Process (증기의 감온·감압과정에서의 엑서지 손실 및 저감방안 분석)

  • Yi, Joong Yong;Lee, Chan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.19-26
    • /
    • 2015
  • The present paper presented and applied an exergy analysis method to evaluate the magnitudes and the locations of exergy losses in the conventional desuperheating and depressurizing process of high pressure and temperature steam delivery system. In addition, for the reduction of exergy losses occurred in conventional process, the present study proposed new alternative processes in which the pressure reducing valve and the desuperheater of conventional process are substituted with steam turbine and heat exchanger, and their effects on exergy loss reduction and exergy efficiency improvement are theoretically investigated and compared. From the present analysis results, the total exergy loss caused in conventional desuperheating and depressurizing process accounted for 66.5% of exergy input and 85% of the total exergy loss was due to the mixing between steam and cold water(e.g desuperheating). However, it was shown from the present analysis results that the present alternative processes can additionally reduce exergy loss by maximum 92.7% of the total exergy loss in conventional process, and can also produce additional and useful energy, the electricity of 220.6 kWh and the heat of 54.3 MJ/hr.

A Study on Magnetic Property Improvement of Rubber Magnets for Heat Loss Reduction of a Refrigerator

  • Ahn, WonSool;Lee, Haakil;Ha, Ji Soo
    • Elastomers and Composites
    • /
    • v.51 no.1
    • /
    • pp.38-42
    • /
    • 2016
  • For improving the heat loss of a refrigerator around door gasket, it is very important to reduce the amount of rubber magnet used, of which thermal conductivity is much higher than the plastics, and enhancing the magnetic properties of rubber magnet itself is crucial for this. In the present study, therefore, a relationship between the optimum conditions of rubber magnet fabrication process and raw material compositions in the ferrite powder/CPE binder compounds was investigated for finding a way to enhance the magnetic properties of rubber magnet. Magnetic attraction forces of a sample rubber magnet was measured as function of distance, and thermal properties of the sample ferrite powder/CPE binder compound were analyzed with TG/DTA thermal analyzer. As a results, a rubber magnet strip with enhanced magnetic properties was expected to be fabricated, of which raw material compound was prepared by compounding with higher ferrite magnetic powder concentration.

The Effect of Residence Time and Heat Loss on NOx Formation Characteristics in the Downstream Region of CH4/Air Premixed Flame (CH4/Air 예혼합화염의 하류영역에서 체류시간 및 열손실에 의한 NOx의 생성특성)

  • Hwang, Cheol-Hong;Hyun, Sung-Ho;Tak, Young-Jo;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.99-108
    • /
    • 2007
  • In this study, the NOx formation characteristics of one-dimensional $CH_4$/Air premixed flame using detailed-kinetic chemistry are examined numerically. The combustor length and the amount of heat loss are varied to investigate the effect of residence time and heat loss on the NOx formation in a post-flame region. In the flame region, NO is mainly produced by the Prompt NO mechanism including $N_2$O-intermediate NO mechanism over all equivalence ratios. However, thermal NO mechanism is more important than Prompt NO mechanism in the post-flame region. In the case of adiabatic condition, the increase of combustor length causes the remarkable increase of NO emission at the exit due to the increase of residence time. On the other hand, NO reaches the equilibrium state in the vicinity of flame region, considering radiation and conduction heat losses. Furthermore the NO, in the case of $\phi$=1.2, is gradually reduced in the downstream region as the heat loss is increased. From these results, it can be concluded that the controls of residence time and heat loss in a combustor should be recognized as an important NOx reduction technology.