• Title/Summary/Keyword: heat insulating effect

Search Result 72, Processing Time 0.025 seconds

Thermal Effect of the Transparent Insulated Opaque Envelopes (투명 단열외피의 열적성능에 관한 연구)

  • Kim, Se-Hwan;Lee, Sung
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.4 no.4
    • /
    • pp.19-24
    • /
    • 2004
  • The thermal effect of a transparent insulated opake wall with solar energy was investigated theoretically. The heat gain through transparent insulated opake wall was studied for relative simple conditions. The stationary heat transport effect was studied for layer which is built on the opake wall. This study shows that a relative low solar radiation intensity causes a great heat reduction through the transparent insulated opake wall. Because the transparent insulation layer is mostly transparent to solar radiation, it is opaque to heat radiation.

  • PDF

Deflection Characteristics of Permanent Formwork Using Multi-layer Insulation (다층형 단열재를 사용한 영구거푸집의 처짐 특성)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Song, Sung-Yong;Kim, Deuck Mo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.130-131
    • /
    • 2019
  • As part of recent low-energy policies, thermal insulation standards for buildings are being tightened every year. In addition, the conventional styrofoam insulating material has a problem that the thickness of the heat insulating material to achieve a standard heat permeability is rapidly increased. Due to the thick insulation, there is a high risk of spreading vulnerable structures such as fire due to lack of space between buildings. On the other hand, the method of using the insulation as a formwork is known to be excellent cost saving effect through the reduction of the formwork usage and the simplification of the external insulation work. In order to solve this problem, this study aims to fabricate a multi-layered insulator that combines high-performance phenolic foam insulation and styrofoam insulation and evaluate the deflection characteristics for use as formwork.

  • PDF

Strength Characteristics of Light-weight Insulating Mortar Using Wasted Foam Polystyrene heat Insulating Materials as Recycling Aggregate (폐발포폴리스티렌 단열재를 순환골재로 사용한 경량 단열 모르타르의 강도특성)

  • Kang, Hye Ju;Jin, Eun mi;Kang, Suk Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.221-222
    • /
    • 2016
  • The replacement ratio of waste EPS was varied, and its effect on compressive strength and absorption capacity was investigated. According to the experimental results, The 28th day compressive strengths for the W/C 50% specimens were 17.5~21.2MPa, which was relatively low compared to the 13.6~22.2MPa of the W/C 70%.

  • PDF

EFFECT OF POROSITY ON THE TRANSIENT MHD GENERALIZED COUETTE FLOW WITH HEAT TRANSFER IN THE PRESENCE OF HEAT SOURCE AND UNIFORM SUCTION AND INJECTION

  • Attia, Hazem Ali;Ewis, Karem Mahmoud;Awad-Allah, Nabil Ahmed
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.2
    • /
    • pp.125-135
    • /
    • 2012
  • The transient magnetohydrodynamic (MHD) generalized Couette flow with heat transfer through a porous medium of an electrically conducting, viscous, incompressible fluid bounded by two parallel insulating porous plates is studied in the presence of uniform suction and injection and a heat source considering the Hall effect. A uniform and constant pressure gradient is imposed in the axial direction and an externally applied uniform magnetic field as well as a uniform suction and injection are applied in the direction perpendicular to the plates. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the Hall current, the porosity of the medium and the uniform suction and injection on both the velocity and temperature distributions is investigated.

Temperature History of the Concrete Corresponding to Various Curing Sheets in the Low Temperature (저온환경에서의 양생시트 변화에 따른 콘크리트의 온도이력 특성)

  • Baek, Dae-Hyun;Hong, Seak-Min;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.781-784
    • /
    • 2008
  • In this paper, insulating effect and strength development of concrete under low temperature are reported varying curing sheets. According to test results, in temperature -5$^{\circ}$C concrete subject to exposure and air cap condition, result in a frost damage at early age by a fall of below zero temperature. Mean while, the combination of PE film and non-woven fabric maintained around 3 $^{\circ}$C within first 24 hours since placement. For double bubble sheets, concrete temperature maintained above 7$^{\circ}$C due to its excellent heat insulating capability. As a result of core strength test, strength of specimens cured with viny + non-woven fabric and double bubble sheets had higher strength than strength of other specimens due to good heat insulation effect at early age.

  • PDF

Effect of Air Content on the Heat Transfer Characteristics of Nonwoven Insulating Materials (부직포내 공기함량이 열전달에 미치는 영향)

  • 김희숙;김은애
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.18 no.2
    • /
    • pp.244-251
    • /
    • 1994
  • The purpose of this study was to analyze conductive convective and radiative heat transfer characteristic of the nonwovens were studied by measuring thermal conductance at atmospheric and low air pressure. The results obtained were as follows . 1) As thickness of air layer Increased, overall heat transfer was decreased by reducing conductive and radiative heat trasfer. 2) The conductive and convective heat trasfer by air were in the range of 79~8971 of overall heat transfer. 3) As thickness of nonwoven increased for a given solidity, overall heat trasfer was decresed by increasing total thickness of air layer and by reducing conductive and radiative heat transfer. 4) For a given weight, increasing thickness is more effective than increasing solidity.

  • PDF

Numerical Evaluation of Heat Transfer un Ground Heat Exchanger Considering Flow through U-loop (파이프 순환수의 수치해석 모사를 통한 수직 밀폐형 지중열교환기 단면의 열전달 효율 평가)

  • Gil, Hu-Jeong;Lee, Chul-Ho;Lee, Kang-Ja;Choi, Hang-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.583-587
    • /
    • 2009
  • This paper presents a series of numerical simulations on the thermal performance and sectional efficiency of a closed-loop vertical ground heat exchanger (U-loop) equipped in a geothermal heat pump system (GHP). A 3-D finite volume analysis (Fluent) was used to simulate the operating process of the closed-loop vertical ground heat exchanger by considering the effect of the thickness of HDPE pipe and grout thermal properties, distance between the inflow and outflow pipes, and the effectiveness of the latticed HDPE pipe system. It was observed that the thermal interference between the two strands of U-loop is of importance in determining the efficiency of the ground heat exchanger, and thus it is highly recommendable to modify the cross section configuration of the conventional U-loop system by including a thermally insulating latice between the two strands.

  • PDF

EFFECT OF HEAT CURING METHODS ON THE TEMPERATURE HISTORY AND STRENGTH DEVELOPMENT OF SLAB CONCRETE FOR NUCLEAR POWER PLANT STRUCTURES IN COLD CLIMATES

  • Lee, Gun-Che;Han, Min-Cheol;Baek, Dae-Hyun;Koh, Kyung-Taek
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.523-534
    • /
    • 2012
  • The objective of this study was to experimentally investigate the effect of heat curing methods on the temperature history and strength development of slab concrete exposed to $-10^{\circ}C$. The goal was to determine proper heat curing methods for the protection of nuclear power plant structures against early-age frost damage under adverse (cold) conditions. Two types of methods were studied: heat insulation alone and in combination with a heating cable. For heat curing with heat insulation alone, either sawdust or a double layer bubble sheet (2-BS) was applied. For curing with a combination of heat insulation and a heating cable, an embedded heating cable was used with either a sawdust cover, a 2-BS cover, or a quadruple layer bubble sheet (4-BS) cover. Seven different slab specimens with dimensions of $1200{\times}600{\times}200$ mm and a design strength of 27 MPa were fabricated and cured at $-10^{\circ}C$ for 7 d. The application of sawdust and 2-BS allowed the concrete temperature to fall below $0^{\circ}C$ within 40 h after exposure to $-10^{\circ}C$, and then, the temperature dropped to $-10^{\circ}C$ and remained there for 7 d owing to insufficient thermal resistance. However, the combination of a heating cable plus sawdust or 2-BS maintained the concrete temperature around $5^{\circ}C$ for 7 d. Moreover, the combination of the heating cable and 4-BS maintained the concrete temperature around $10^{\circ}C$ for 7 d. This was due to the continuous heat supply from the heating cable and the prevention of heat loss by the 4-BS. For maturity development, which is an index of early-age frost damage, the application of heat insulation materials alone did not allow the concrete to meet the minimum maturity required to protect against early-age frost damage after 7 d, owing to poor thermal resistance. However, the combination of the heating cable and the heat insulating materials allowed the concrete to attain the minimum maturity level after just 3 d. In the case of strength development, the heat insulation materials alone were insufficient to achieve the minimum 7-d strength required to prevent early-age frost damage. However, the combination of a heating cable and heat insulating materials met both the minimum 7-d strength and the 28-d design strength owing to the heat supply and thermal resistance. Therefore, it is believed that by combining a heating cable and 4-BS, concrete exposed to $-10^{\circ}C$ can be effectively protected from early-age frost damage and can attain the required 28-d compressive strength.

Hydration Heat Analysis of Mass Concrete according to FAC and CGS Replacement Rates (FAC 및 CGS 치환율에 따른 매스 콘크리트의 수화열 해석)

  • Kim, Su-Hoo;Beak, Sung-Jin;Han, Soo-Hwan;Han, Jun-Hui;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.158-159
    • /
    • 2022
  • This study analyzed the temperature stress through mixtures mass concrete hydration heat analysis according to the replacement rates of FAC and CGS. As a result of the analysis, it was possible to confirm the effect of reducing hydration heat when CGS is substituted for the low heat mixture of mass concrete. However, the stress of the FAC+CGS combination exceeded the tensile stress. It is believed that it is necessary to apply the insulating sheet of the surface part and reduce the unit weight of cement.

  • PDF

Thermal Insulation and Flame Retardant Properties of Cement Based Super Light-weight Inorganic Thermal Insulation using 100㎛ Grade Glass Bubble (100㎛급 글라스 버블 혼입 시멘트계 초경량 무기 단열재의 단열 및 난연특성)

  • Son, Bae-Geun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.642-649
    • /
    • 2021
  • Energy saving standard for buildings are strengthened, the application of exterior insulation finishing system and thickness of insulation materials are increasing. Most buildings with exterior insulation finishing system is applied organic insulating material. Organic insulating material have workability, economic feasibility, reduction in construction cost, and excellent thermal insulation performance. However, Organic insulating material is very vulnerable to heat, so when a fire occurs, rapid fire spread and toxic gas are generated, causing many casualties. Inorganic insulating material can be non-combustible performance, but it is heavy and has low thermal insulation performance. Mineral wool has higher thermal insulation performance than other types of inorganic insulating material, but mineral wool is disadvantageous to workability and vulnerable to moisture. Glass bubble are highly resistant to water and chemically stable substances. In addition, the density of the glass bubble is very low and the particles are spherical, fluidity is improved by the ball bearing effect. Glass bubbles can be used with cement-based ino rganic insulating material to impro ve the weight and thermal insulatio n perfo rmance o f cement-based inorganic insulation. This study produced a inorganic insulating materials were manufactured using cement-based materials and glass bubble. In order to evaluate the insulation performance and flame retardant performance of cement-based super light-weight inorganic insulating materials using with glass bubble, insulation performance or flame retardant and non-combustible performance were evaluated after manufacturing insulating materials using micro cement and two types of glass bubbles. From the test result, Increasing the mixing ratio of glass bubbles improved the insulation performance of cement-based super light-weight inorganic insulating materials, and when the mixing ratio of glass bubbles was 10%, it sho wed sufficient flame retardant and no n-co mbustible perfo rmance.