• Title/Summary/Keyword: heat exposure

Search Result 545, Processing Time 0.029 seconds

An Analysis on the Effects of Cluster Leadership Rotation among Nodes Using Least Temperature Routing Protocol

  • Encarnacion, Nico;Yang, Hyunho
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.2
    • /
    • pp.104-108
    • /
    • 2014
  • The field of body sensor networks has attracted interest of many researchers due to its potential to revolutionize medicine. These sensors are usually implanted inside the human body and communicate among themselves. In the process of receiving, processing, or transmitting data, these devices produce heat. This heat damages the tissues surrounding the devices in the case of prolonged exposure. In this paper, to reduce this damages, we have improved and evaluated two protocols-the least temperature routing protocol and adaptive least temperature routing protocol-by implementing clustering as well as a leadership rotation algorithm. We used Castalia to simulate a basic body area network cluster composed of 6 nodes. A throughput application was used to simulate all the nodes sending data to one sink node. Simulations results shows that improved communication protocol with leadership rotation algorithm significantly reduce the energy consumption as compared to a scheme without leadership rotation algorithm.

Development of a Holographic Interferometric Tomography System and Its Application to Three-Dimensional Natural Convection (홀로그래피 간섭 토모그래피 개발 및 3차원 자연대류 열전달에의 적용)

  • Lee, Soo-Man;Kang, Min-Gu;Cha, Dong-Jin;Joo, Won-Jong;Kang, Bo-Seon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1609-1614
    • /
    • 2003
  • In this study, a practical holographic interferometric tomography system, which is instantaneous and non-contact for measuring three dimensional flow field, was developed. The system consists of holographic recording/reconstruction system, fringe analysis code and computational tomography code and it is developed with Gill environment for general users. The developed system was applied to three-dimensional natural convection from a discrete flush-mounted circular heat source on the bottom of a cubic enclosure. The heat source was located at the off-center of the bottom plate so that three-dimensional temperature field can be achieved. A set of multi-directional holographic interferograms was recorded by employing a double-reference beam, double-exposure holographic technique. Optical pathlength data were extracted from the recorded interferometric data and finally three dimensional temperature field inside the cube was reconstructed.

  • PDF

THE PERFORMANCE OF CLAY BARRIERS IN REPOSITORIES FOR HIGH-LEVEL RADIOACTIVE WASTE

  • Pusch, Roland
    • Nuclear Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.483-488
    • /
    • 2006
  • Highly radioactive waste is placed in metal canisters embedded in dense clay termed buffer. The radioactive decay is associated with heat production, which causes degradation of the buffer and thereby time-dependent loss of its waste-isolating potential. The buffer is prepared by compacting air-dry smectite clay powder and is initially not fully water saturated. The evolution of the buffer starts with slow wetting by uptake of water from the surrounding rock followed by a long period of exposure to heat, pressure from the rock and chemical reactants. It can be described by conceptual and theoretical models describing processes related to temperature (T), hydraulic (H), mechanical (M) and chemical performance (C). For temperatures below 90 C more than 75 % of the smectite will be preserved for 100 000 years but cementation may reduce the excellent performance of the buffer to a yet not known extention.

Degradation of Carbon Steel Tube after Long Time Exposure at Petrochemical Plant (석유화확 Plant에서 장시간 사용된 튜브형태 탄소강의 열화현상)

  • Baik, Nam Ik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.1
    • /
    • pp.16-20
    • /
    • 2000
  • There have been little reports on the degradation of medium-carbon steel tubes served at high temperature for a long period. The purpose of this research was to provide the information of the proper replacement span of the tubes with the new ones. We investigated the medium-carbon steel tubes which were used at petrochemical plant for about 50,000 hrs to examine their mechanical properties and microstructures. Experimental results showed that the tubes satisfied the specification of ASTM despite such a long period of service, but mechanical properties, especially charpy impact values, were reduced. It concludes that the tubes on service at the plants needs a periodical inspection.

  • PDF

Effect of Degraded Al-doped ZnO Thin Films on Performance Deterioration of CIGS Solar Cell (고온 및 고온고습 환경 내에서 ZnO:Al 투명전극의 열화가 CIGS 박막형 태양전지의 성능 저하에 미치는 영향)

  • Kim, Do-Wan;Lee, Dong-Won;Lee, Hee-Soo;Kim, Seung-Tae;Park, Chi-Hong;Kim, Yong-Nam
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.328-333
    • /
    • 2011
  • The influence of Al-doped ZnO (AZO) thin films degraded under high temperature and damp heat on the performance deterioration of Cu(In,Ga)$Se_2$ (CIGS) solar cells was investigated. CIGS solar cells with AZO/CdS/CIGS/Mo structure were prepared on glass substrate and exposed to high temperature ($85^{\circ}C$) and damp heat ($85^{\circ}C$/85% RH) for 1000 h. As-prepared CIGS solar cells had 64.91% in fill factor (FF) and 12.04% in conversion efficiency. After exposed to high temperature, CIGS solar cell had 59.14% in FF and 9.78% in efficiency, while after exposed to damp heat, it had 54.00% in FF and 8.78% in efficiency. AZO thin films in the deteriorated CIGS solar cells showed increases in resistivity up to 3.1 times and 4.4 times compared to their initial resistivity after 1000 h of high temperature and damp heat exposure, respectively. These results can be explained by the decreases in carrier concentration and mobility due to diffusion or adsorption of oxygen and moisture in AZO thin films. It can be inferred that decreases in FF and conversion efficiency were caused by an increase in series resistance, which resulted from an increase in resistivity of AZO thin films degraded under high temperature and damp heat.

Effect of Trehalose on Stabilization of Cellular Components and Critical Targets Against Heat Shock in Saccharomyces cerevisiae KNU5377

  • PAIK SANG-KYOO;YUN HAE-SUN;IWAHASHI HITOSHI;OBUCHI KAORU;JIN INGNYOL
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.965-970
    • /
    • 2005
  • In our previous study [14], we found that heat-shock exposure did not stimulate the neutral trehalase activity in Sacchromyces cerevisiae KNU5377, but did in ATCC24858. Consequently, the trehalose content in KNU5377 became 2.6 times higher than that in ATCC24858. Because trehalose has been shown to stabilize the structure and function of some macromolecules, the present work was focused to elucidate the relationship between trehalose content of these strains and thermal stabilities of whole cells, through differential scanning calorimetry (DSC), and to predict critical targets calculated from the hyperthermic cell killing rates. These analyses showed that the prominent DSC transition of both strains gave identical $T_m$ (transition temperature) values in exponentially growing cells, and that the $T_m$ values of critical targets was about $3^{\circ}C$ higher in KNU5377 than in ATCC24858. Both heat-shocked KNU5377 and ATCC24858 cells displayed similar shifts in their DSC transition profiles. On the other hand, the $T_m$ value of the critical target of KNU5377 was decreased by $2.1^{\circ}C$, which was still higher than ATCC24858 showing no changes. In view of these results, the intrinsic thermotolerance of KNU5377 did not appear to result from the stability of entire cellular components, but rather possibly from that of particular macromolecules, including critical targets, even though it should be investigated in more details. Although the trehalose levels in heat-shocked cells are significantly different, as described in our previous study [14], the overall pattern of thermal stabilities and their predicted critical targets in two heat-shocked strains seemed to be identical. These data suggest that the trehalose levels examined before and after heat shock of exponentially growing cells are not closely correlated with the stabilities of whole cells and/or critical targets in both yeast strains.

Stress-shock Response of a Methylotrophic Bacterium Methylovorus sp. strain SSl DSM 11726

  • Park, Jong H.;Kim, Si W.;Kim, Eungbin;Young T. Ro;Kim, Young M.
    • Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.162-167
    • /
    • 2001
  • Methylovorus sp. strain SS1 DSM 11726 was found to grow continuously when it was transferred from 30$\^{C}$ to 40$\^{C}$ and 43$\^{C}$. A shift in growth temperature from 30$\^{C}$ to 45$\^{C}$, 47$\^{C}$ and 50$\^{C}$ reduced the viability of the cell population by more than 10$^2$, 10$^3$and 10$\^$5/ folds, respectively, after 1h cultivation. Cells transferred to 47$\^{C}$ and 50$\^{C}$ after preincubation for 15 min at 43$\^{C}$, however, exhibited 10-fold increase in viability. It was found that incubation for 15 min at 40$\^{C}$ of Methylovorus sp. strain SSl grown at 30$\^{C}$ was sufficient to accelerate the synthesis of a specific subset of proteins. The major heat shock proteins had apparent molecular masses of 90, 70, 66, 60, and 58 kDA. The 60 and 58 kDa proteins were found to cross-react with the antiserum raised against GroEL protein. The heat shock response persisted for over 1h. The shock proteins were stable for 90 min in the cell. Exposure of the cells to methanol induced proteins identical to the heat shock proteins. Addition of ethanol induced a unique protein with a molecular mass of about 40 kDa in addition to the heat-induced proteins. The proteins induced in paraquat-treated cells were different from the heat shock proteins, except the 70 and 60 kDa proteins.

  • PDF

Characterization of A Catalystic Gas Sensor for Measuring Heat Content of Natural Gas (천연가스의 열용량을 측정하기 위한 촉매가스센서의 특징)

  • Lee K. Y.;Maclay G. J.;Stetter J. R.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 1998
  • A low power (below than 300 mW) catalytic bead combusible gas sensor is developed and utilized with a computer controlled sampling system for measuring heat content of natural gas. The heat content of gas is proportional to the change in the energy required to exposure to the sample of combustible gas. The heat content of natural gas samples ranging 36.30 - 39.88 $MJ/m^3$ is measured in the range of approximately $1\%$ error, which is comparable to its nominal heat content. Each gas represents a slightly different curve of sensitivity to sensor temperature. Thus all of the sensitivities are not equal to every temperature. In calibration process the choice of a optimum operating temperature is an important factor that influences the overall performance of the measurement system.

  • PDF

Improved Viability and Proteome Analysis of Lactobacillus fermentum KLB12 upon Heat Stress (Lactobacillus fermentum KLB12의 열 전처리에 따른 열 스트레스 내성 증진 및 프로테옴 변화)

  • 김주현;박미영;김승철;윤현식;소재성
    • KSBB Journal
    • /
    • v.18 no.4
    • /
    • pp.294-300
    • /
    • 2003
  • In the previous study, we have isolated several vaginal lactobacilli from Korean woman and selected one of them (KLB12) for further study, which was indentified as Lactobacillus fermentum by sequence analysis of 16S rRNA gene. Formulated L. fermentum KLB12 can be used for ecological treatment of bacterial vaginosis. For pharmaceutical formulation, the spray-drying process is required where stress such as high temperature is routinely applied. In this study, we found that heat stress at 60$^{\circ}C$ for 20∼30min reduced the viable cell population of KLB12 by 10$\sub$6/~10$\sub$9/. However, adaptation of KLB12 cells at 52$^{\circ}C$ made them more thermotolerant upon exposure to 60$^{\circ}C$. The level of thermal protection in RSM (reconstituted skim milk) by adaptation in acid (pH 5), cold (4$^{\circ}C$), ethanol (3%), NaCI (0.3M) was also examined. Although not as efficient as the homologous stress, adaptations in both cold and NaCI gave considerable cross protection against heat stress. When chloramphenicol was added during heat adaptation, adaptation effect was abolished. This suggests that de novo protein synthesis is necessary during the adaptation process. Important changes in proteome during heat adaptation was examined with two-dimensional gel electrophoresis.

Analysis of heat, cold or salinity stress-inducible genes in the Pacific abalone, Haliotis discus hannai, by suppression subtractive hybridization

  • Nam, Bo-Hye;Park, Eun-Mi;Kim, Young-Ok;Kim, Dong-Gyun;Jee, Young-Ju;Lee, Sang-Jun;An, Cheul Min
    • The Korean Journal of Malacology
    • /
    • v.29 no.3
    • /
    • pp.181-187
    • /
    • 2013
  • In order to investigate environmental stress inducible genes in abalone, we analyzed differentially expressed transcripts from a Pacific abalone, Haliotis discus hannai, after exposure to heat-, cold- or hyposalinity-shock by suppression subtractive hybridization (SSH) method. 1,074 unique sequences from SSH libraries were composed to 115 clusters and 986 singletons, the overall redundancy of the library was 16.3%. From the BLAST search, of the 1,316 ESTs, 998 ESTs (75.8%) were identified as known genes, but 318 clones (24.2%) did not match to any previously described genes. From the comparison results of ESTs pattern of three SSH cDNA libraries, the most abundant EST was different in each SSH library: small heat shock protein p26 (sHSP26) in heat-shock, trypsinogen 2 in cold-shock, and actin in hyposalinity SSH cDNA library. Based on sequence similarities, several response-to-stress genes such as heat shock proteins (HSPs) were identified commonly from the abalone SSH libraries. HSP70 gene was induced by environmental stress regardless of temperature-shock or salinity-stress, while the increase of sHSP26 mRNA expression was not detected in cold-shock but in heat-shock condition. These results suggest that the suppression subtractive hybridization method is an efficient way to isolate differentially expressed gene from the invertebrate environmental stress-response transcriptome.