• Title/Summary/Keyword: heat equation

Search Result 1,392, Processing Time 0.039 seconds

Estimation of Actual Evapotranspiration using Multi-Satellite Data over Korea Peninsula (다중 위성 자료를 이용한 한반도에서의 실제 증발산량 산출에 관한 연구)

  • Lee, Min-Ji;Han, Kyung-Soo;Kim, In-Hwan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.145-151
    • /
    • 2011
  • Evapotranspiration (ET) is an important process acrossa wide range of disciplines, including ecology, hydrology and meteorology.In this study, daily actual evapotranspiration (ETa) is based energy balance equation and considering high surface roughness length to estimate. This study was used variety of satellite data and ground observation data in Korea Peninsula from 1 January to 31 December 2009. In this study, sensible heat flux is one of the important parameters of ETa. Measurements of sensible heat flux are, however, complex and can't be easily obtained. So this study was used an empirical coefficient B to simplify estimate of sensible heat flux. The coefficient B in the ETa model requires a careful definition of aerodynamic resistance. So this study proposed ETa model considering aerodynamic resistance and high surface roughness length. This study was conducted validation in comparison of the proposed daily ETa results with Priestley-Taylor ETp.

An Introduction to the Ground Water Model Test (지하수 model에 관한 모형시험방법)

  • 김주욱
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.9 no.2
    • /
    • pp.1301-1305
    • /
    • 1967
  • Ground water flow can be studied with model test. Model test of ground water works are necessary for economic and safe design of the works. Also influence of the ground water flow to the durability and safety of hydraulic structures can be studied with this model. a. Sand model ; Water flow through porous media is the principle of sand model. Darcy's formula is the basic equation, $q=k{\frac{dh}{ds}}^{\circ}. The effect of the ground water flow on the grain system itself is represented with this model only. b. Hele-Shaw model ; In this model use is made of the viscous flow analogy. Viscous fluid such as glycerine flowing through two parallel plates depends on Poiseuille law, $q=-c{\frac{dh}{ds}}$. The analogue can be used vertically and horizontally. c. Heat model ; This is based on the analogy of the Fourier's law for heat conduction and Darcy's law for ground water flow. Especially unsteady problem can be studied with this model. A difficulty of the construction of this model is the isolation, which has to prevent losses of the heat. d. Electirc model ; Ohm's law for electric current is analogous to Darcy's law. Resistance material such as metal foil, graphite block, water with salt added, gelatine with salt added, ete. is connected to electric sources and resistor, and equi-voltage line is detected with galvanometer, $N_aCl$, $CuSo_4$, etc. are used as salt in the model. e. Membrane model ; This model is based on the facts that the deflection of a thin membrane obeys Laplace's equation if there is no load in the direction perpendicular to the membrane, and if the dellection is small.

  • PDF

Correlation Between Bond Energy of Metal-Ligand and Observed Heat of Ligation of Cu(II) Complexes (Cu(II) 착물의 金屬-리간드 사이의 결합에너지와 실측 리간드화열과의 相關性)

  • Young-Dae Song;Chen-Ho Choi;Byung-Kak Park
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.230-237
    • /
    • 1992
  • The correlation was investigated between the observed heat of ligation and calculated bond energy for square planar and octahedral Cu(II) complexes by EHMO (Extended Huckel Molecular Orbital) method. It was found that net charge of $Cu^{2+}$ ion of both square planar $[Cu(H_2O)_{4-x}(NH_3)_x]^{2+}$(X = 0, 1, 2,${\ldots}$4) and octahedral $[Cu(H_2O)_{6-x}(NH_3)_x]^{2+}$complexes (X = 0, 1, 2,${\ldots}$6) is decreased with substituting $NH_3$ for $H_2O$ molecule. It was found that a good relationship exists between the observed heat of ligation and the calculated bond energy. From this fact, we can obtain a linear equation ${\Delta}H$ = 0.1194$E_{diss}$ + 0.4718, theoretical equation.

  • PDF

Semi-numerical Study on the Flame Tilt Equation due to Wind on the Surface Fire in Forest Fire (산불 지표화에서의 바람에 의한 화염각 변화 산정식 도출에 관한 준-수치해석 연구)

  • Kim, Dong-Hyun
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.90-95
    • /
    • 2009
  • The wind is very important factor in forest fire spread. Flame spread has a change through wind pattern change in forest fire. In order to analyze the forest fire flame spread rate, change of flame tilt depending on wind may be considering first. This is be cause the flame spread rate varies by the flame tilt changed due to transfer of heat. Especially, as wind speed grow, flame gets closer to surface, heat transfer ratio increase, virgin fuel bed reaches ignition temperature more rapidly, and flame moves faster. This study deduces, through experiment and physical figure analysis, relations on the change behavior of flame tilt due to wind. The value of flame tilt angle calculated from the equation and the experiment value showed average error angle of $3.3^{\circ}$, which is relatively smaller than results of previous studies that used other coefficient. Froude number coefficient A can be calculated in the method provided in this research for estimation of flame tilt angle of virgin fuel bed with varying thermal properties. The research finding is expected to be applied to future studies on flame spread through numerical analysis of heat transfer.

Numerical Analysis on Radiative Heating of a Plume Base in Liquid Rocket Engine (플룸에 의한 액체로켓 저부면 복사 가열 해석)

  • Sohn Chae Hoon;Kim Young-Mog
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.85-91
    • /
    • 2005
  • Radiative heating of a liquid rocket base plane due to plume emission is numerically investigated. Calculation of flow and temperature fields around rocket nozzle precedes and thereby realistic plume shape and temperature distribution inside the plume are obtained. Based on the calculated temperature field, radiative transfer equation is solved by discrete ordinate method. With the sample rocket plume, the averaged radiative heat flux reaching the base plane is calculated about 5 kw/m$^{2}$ at the flight altitude of 10.9 km. This value is small compared with radiative heat flux caused by constant-temperature (1500 K) plume emission, but it is not negligibly small. At higher. altitude (29.8km), view factor between the base plane and the exhaust plume is increased due to the increased expansion angle of the plume. Nevertheless, the radiative heating disappears since the base plane is heated to high temperature (above 1000 K due to convective heat transfer.

Studies on Physicochemical Properties of Erythritol, Substitude Sugar (대체감미료 에리스리톨의 이화학적인 성질에 관한 연구)

  • Byun, Sang-Hee;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1089-1093
    • /
    • 1997
  • The physicochemical properties of erythritol were examined by measuring water absorption, solubility, water activity, heat stability, and viscosity compared to those of sucrose, xylitol, sorbitol and fructo-oligosaccharide. Erythritol showed the lowest water absorption and the highest water activity reducing capacity. In the solubility test of sweeteners, the saturation concentration of erythritol at $20^{\circ}C$ was 35.8%, which was the lowest solubility. Caramelization test and Maillard reaction test showed that erythritol was stabler than sucrose in heat treatment, while fructo-oligosaccharide showed the strongest reaction. The viscosity of erythritol was similar to that of other sweeteners at the same concentration (10%, 30% w/w). The viscosity of sweeteners increased exponentially with increasing concentration but decreased with increasing temperature following Arrhenius equation. The activation energy for flow of 30% erythritol solution was estimated to be 10.8 kcal/g mol.

  • PDF

Microstructures of Friction Stir Lap Weld in A5052-H112 Alloy (A5052-H112 합금의 겹치기 마찰교반접합 조직 특성)

  • Ko, Young-Bong;Lee, Joong-Hun;Park, Kyeung-Chae
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.17-24
    • /
    • 2009
  • The Friction Stir Welding(FSW) has mainly been used for making butt joints in Al alloys. Development of Friction Stir Lap Welding(FSLW) would expand the number of applications. Microstructure of FSLW in A5052-H112 alloy was investigated under varying rotation and welding speed. As the rotation speed was increased and the welding speed was decreased, a amount of heat was increased. As a result, bead interval was narrower, bead width are larger, and experimental bead interval was almost similar to theoretical bead interval. Typical microstructures of FSLW A5052-H112 alloy consist of three zones, including Stir Zone(SZ), Thermo-Mechanically Affected Zone(TMAZ) and Heat Affected Zone(HAZ). As a amount of heat was increased, average grain size was larger in three zones. Nevertheless, the aspect ratio was almost fixed for FSLW conditions. The misorientation of SZ, HAZ and TMAZ was examined. A large number of low angle grain boundaries, which were formed by severe plastic deformation, were showed in TMAZ as comparison with SZ and HAZ. Microhardness distribution was high in order of BM, SZ, TMAZ, and HAZ. The Micro-hardness distribution in HAZ, TMAZ of upper plate were lager than lower plate. Relationship between average grain size and microhardness was almost corresponded to Hall-Petch equation.

Study on Flame Height Equation for the Pinus densiflora Surface Fuel Bed (소나무 낙엽층 화염높이 산정식에 관한 연구)

  • Kim, Dong-Hyun
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.10-15
    • /
    • 2009
  • Flame height calculation in a forest fire is a crucial part of predicting horizontal or vertical flame spread flared by radiation heat transfer. Flame height, which is one of the flame characteristics, can be estimated by the average height of luminous flame. This research relied on flame height observation test on P. densiflora surface fuel bed, which are surface combustibles in a forest, and calorimeter to measure Heat Release Rate, thus produced $H_f=0.027(\dot{Q'})^{2/3}$, flame height calculation equation for surface fuel. The research did not take into consideration such conditions as external velocity, slope and other variables that could affect flame height. According to comparison among experiment results, calculation results of the above formula and those of existing Heskestad formula (1998), it was found that standard error in fallen pine needles between experimental results and calculation results of the above formula amounts to 0.08, whereas standard error in same plant between experimental results and calculation results of existing Heskestad formula amounts to 0.23.

Ecophysiological Interpretations on the Water Relations Parameters of Trees(VII) - Measurement of Water Flow by the Heat Pulse Method in a Larix leptolepis Stand - (수목(樹木)의 수분특성(水分特性)에 관(關)한 생리(生理)·생태학적(生態學的) 해석(解析)(VII) - Heat pulse법(法)에 의한 낙엽송임분(林分)의 수액류속(樹液流速) 계측(計測) -)

  • Han, Sang Sup;Kim, Sun Hee
    • Journal of Korean Society of Forest Science
    • /
    • v.82 no.2
    • /
    • pp.152-165
    • /
    • 1993
  • This is the basic study in order to know the amount of transpirational water loss in a Larix leptorepis stand by a heat pulse method. Especially this study has been measured and discussed the diurnal and seasonal trends of heat pulse velocity by changes of radiation, temperature and humidity, differences of heat pulse velocity by direction and depth in stem, differences of heat pulse velocity by dominant, codominant and suppressed trees, diurnal change of heat pulse velocity by change of leaf water potential, sap flow path way in sapwood by dye penetration and amount of daily and annual transpiration in a tree and stand. The results obtained as follows : 1. Relation between heat pulse velocity(V) and sap flow rate(SFR) was established as a equation of SFR=1.37V($r=0.96^{**}$). 2. The sap flow rate presented in the order of dominant, codominant and suppressed tree, respectively. The daily heat pulse velocity was changed by radiation, temperature and vapor pressure deficit. 3. The heat pulse velocity in individual trees did not differ in early morning and in late night, but had some differed from 12 to 16 hours when radiation was relatively high. 4. The heat pulse velocity and leaf water potential showed similar diurnal variation. 5. The seasonal variation of heat pulse velocity was highest in August, but lowest in October and similar value of heat pulse velocity in the other months. 6. The heat pulse velocity in stem by direction was highest in eastern, but lowest in southern and similar velocity in western and northern. 7. The difference of heat pulse velocity in according to depths was highest in 2.0cm depth, medium in 1.0cm depth, and lowest in 3.0cm depth from surface of stem. 8. The sap flow path way in stem showed spiral ascent turning right pattern in five sample trees, especially showed little spiral ascent turning right in lower part than 3m hight above ground, but very speedy in higher than 3m hight. 9. The amount of sap flow(SF) was presented as a equation of SF=1.37AV and especially SF in dominant tree was larger than in codominant or suppressed tree. 10. The amount of daily transpiration was 30.8ton/ha/day and its composition ratio was 83% at day and 17% at night. 11. The amount of stand transpiration per month was largest in August(1,194ton/ha/month), lowest in May (386ton/ha/month). The amount of stand transpiration per year was 3,983ton/ha/year.

  • PDF

Numerical Modeling of Heat Transfer for Squeeze Casting of MMCs (용탕주조법을 이용한 금속복합재료 제조공정의 열전달 해석)

  • Jung, C.K.;Pyun, H.J.;Jung, S.W.;Nam, H.W.;Han, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.319-324
    • /
    • 2001
  • A finite element model for the process of squeeze casting for metal matrix composites (MMCs) in cylindrical mold is developed. The fluid flow and the heat transfer are the fundamental phenomena in the squeeze casing process. To describe heat transfer with solidification of molten aluminum, the energy equation in terms of temperature and enthalpy are applied to two dimensional axisymmetric model which is similar to the experimental system. And one dimensional flow model is employed to simulate the transient metal flow. The direct iteration technique was used to solve the resulting nonlinear algebraic equations. A computer program is developed to calculate the enthalpy, temperature and fluid velocity. Cooling curves and temperature distribution during infiltration and solidification are calculated for pure aluminum. The temperature is measured and recorded experimentally. At two points of the perform inside and one point of the mold outside, thermocouple wire are installed. The time-temperature data are compared with the calculated cooling curves. The experimental results show that the finite element model can estimate the solidification time and predict the cooling process.

  • PDF