• Title/Summary/Keyword: heat equation

Search Result 1,383, Processing Time 0.027 seconds

The Study of Heat Transfer on a Isothermal Circular Surface by an Impinging, Circular Water Jets with the Low Velocity Against the Direction of Gravity (중력방향과 대향류인 저속 원형노즐제트 충돌에 의한 일정 두께 하향 등온원형평판에서의 열전달 현상)

  • Eom, Yongkyoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.4
    • /
    • pp.449-458
    • /
    • 2014
  • The heat transfer phenomenon was investigated in this study when a single round water jet with the low velocity and against the direction of gravity flows to the downward facing Isothermal of definite thickness circular plate. Experimental investigation is performed for a single round jet diameter 4mm, 6mm, and 8mm with the jet velocity 2.4m/s and jet fluid temperature of $24^{\circ}C$, varied the ratio of nozzle clearance/nozzle diameter (H/D)1, 2, 3, 6, and 8, on circular plate isothermal condition with $85^{\circ}C$. The local convection heat transfer coefficient distributions are analyzed based on the visualization of jet flow field. The effects of the diameter of Nozzle, the ratio of H/D and the ratio of nozzle diameter/circular plate diameter on heat transfer phenomenon are investigated. As a results of experiment is obtained correlation equation, $Nu_r=3.18Re_r^{0.55}Pr_r^{0.4}$.

Heat Analysis of Built-In Spindle Motor for High-Speed Machine Tools (공작기계용 고속 내장형 스핀들 모터의 열 해석)

  • Sim, Dae-Gon;Song, Seung-Hoon;Cho, Yoon-Hoo;Cho, Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.71-77
    • /
    • 2000
  • The built-in spindle motor for high-speed machine tools is designed and developed by Corporate R&D Institute of DAEWOO Heavy Industries LTD. The heat analysis program for the built-in spindle motor is developed by using lumped method. For the purpose of verification of the program comparison analyses between experiments and calculations are performed on the three motors ; DHI prototype of built-in spindle motor built-in spindle motor sample A and sample B As results calculated temperature distributions are in good agreement with the test results within the average error of 10% Calculated results of all the built-in spindle motors show that maximum temperature rise at high speed remains in the operating condition without exceeding the permitted limit but they exceeded the permitted limit of temperature rise at low speed.

  • PDF

Shape Optimization of a Trapezoidal Micro-Channel (사다리꼴 미세유로의 형상최적화)

  • Husain, Afzal;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2666-2671
    • /
    • 2007
  • This work presents microchannel heat sink shape optimization procedure using Kriging method. Design variables relating to microchannel width, depth and fin width are selected, and thermal resistance has been taken as objective function. Design points are selected through a three-level fractional factorial design of sampling method. Navier-Stokes and energy equations for laminar flow and conjugate heat transfer are solved at these design points using a finite volume solver. Solutions are carefully validated with experimental results. Using the numerically evaluated objective function, a surrogate model (Kriging) is constructed and optimum point is searched by sequential quadratic programming. The process of shape optimization greatly improves the thermal performance of microchannel heat sink under constant pumping power.

  • PDF

ANALYSIS OF TURBULENT HEAT TRANSFER FROM STAGGERED PIN-FIN ARRAYS WITH DIAMOND SHAPED ELEMENTS AT VARIOUS GEOMETRICAL CONFIGURATIONS (엇갈린 다이아몬드형 핀휜의 형상에 따른 난류열전달 성능해석)

  • Cho, A.T.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.20-26
    • /
    • 2008
  • A numerical study is carried out to analyze the steady three-dimensional turbulent flow and convective heat transfer in a staggered pin-fin array with diamond shaped elements at various geometrical configurations. Steady Reynolds-averaged Navier-Stokes equations and energy equation are solved using a finite volume based solver. Shear stress transport (SST) model is used as turbulence closure. The computational domain is composed of one pitch of pin-fin displacement with periodic boundary conditions on the surfaces normal to the streamwise direction and the cross-streamwise direction. The numerical results for Nusselt number and friction factor are validated with experimental results. The effects of pin angle, pin height and pitch on Nusselt number, friction factor and efficiency index are investigated.

Natural Convection in the Annulus between Horizontal Non-Circular Cylinders (수평 비원형이중관 사이의 환상공간에서의 자연대류)

  • Bai, D.S.;Kwon, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.4
    • /
    • pp.305-312
    • /
    • 1989
  • Laminal natural convection heat transfer in the annulus between isothermal horizontal non-circular cylinders is studied by solving the Navier-Stokes and energy equation using an elliptic numerical procedure. Results are obtained to determine the effects of the diameter ratio($D_o/D_i$) and Rayleigh number on heat transfer. The diameter ratio is varied from 1.5 to 13.0 at Pr=0.7, H/L=1.5 and $10^3{\leqslant}Ra_L{\leqslant}4{\times}10^4$. It is found that the diameter ratio causes a more significant on the local heat transfer coefficient of lower semi-circular cylinder and plate than upper semi-circular cylinder. The mean Nusselt number increases as the diameter ratio and Rayleigh number increase, and is higher than that of the circular annulus with a same wetted perimeter.

  • PDF

A Study on the Natural Convection Cooling of Electronic Device Considering Conduction and Radiation (전도와 복사를 고려한 전자 장비의 자연대류 냉각에 관한 연구)

  • Lee, K.S.;Baek, C.I.;Kim, W.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.266-275
    • /
    • 1995
  • A numerical investigation on the conduction-natural convection-surface radiation conjugate heat transfer in the enclosure having substrate and chips has been performed. A 2-dimensional simulation model is developed by considering heat transfer by conduction, convection and radiation. The solutions to the equation of radiative transfer are obtained by the discrete ordinates method using S-4 quadrature. The effects of Rayleigh number and the substrate-fluid thermal conductivity ratio on the cooling of chip are analyzed. The result shows that radiation is the dominant heat transfer mode in the enclosure.

  • PDF

A COMPUTATIONAL STUDY ON FREE CONVECTION FOR THERMAL PERFORMANCE EVALUATION OF A SWNT THIN-FILM HEATER (SWNT 투명박막히터의 열성능 평가를 위한 자유대류 열전달 해석)

  • Kwak, H.S.;Lee, S.E.;Park, K.S.;Kim, K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.315-320
    • /
    • 2009
  • A computational investigation is conducted on free convection from a thin plate having a surface heat source. The thermal configuration simulates the recently-proposed transparent film heater made of a single-walled carbon nanotube film on a glass substrate. The Navier-Stokes computations are carried out to study laminar free convection from the heater. Parallel numerical experiments are performed by using a simplified design analysis model which solve the conduction equation with the boundary conditions utilizing several existing correlations for convective heat transfer coefficient. Comparison leads to the most suitable boundary condition for the thermal model to evaluate the performance evaluation of a transparent thin-film heater.

  • PDF

Heat and mass transfer in laminar-wavy film (층류-파동 액막의 열 및 물질전달)

  • 김병주;김정헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.431-439
    • /
    • 1998
  • Falling film absorption process is an important problem in application such as absorption chillers. The presence of waves on the film affects the absorption process significantly. In the present study the characteristics of heat and mass transfer in laminar-wavy falling film were studied numerically. The wavy flow behavior was incorporated in the energy and diffusion equation. The numerical solution indicated that the interfacial wave increased the transfer rates remarkably. Interfacial shear stress and wave frequency seemed to be the dominant factors on the film Nusselt number and Sherwood number in the wavy film. A comparison of the transfer rates of the wavy film to that of the smooth film showed that the mass transfer rate could be increased by more than 50%.

  • PDF

A Study on Thermo-Physical Properties of Microencapsulated Phase Change Material Slurry (마이크로캡슐 잠열 축열재 혼합수의 열물성에 관한 연구)

  • 임재근;최순열;김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.962-971
    • /
    • 2004
  • This paper has dealt with thermo-physical properties of microencapsulated phase change material slurry as a latent heat storage material having a low melting point. The measured results of the thermo-physical properties of the test microencapsulated phase change material slurry, those are, density, specific heat, thermal conductivity and viscosity, were discussed for the temperature region of solid and liquid phases of the dispersion material (paraffin). The measurements of these properties of microencapsulated phase change material slurry have been carried out by using a specific-gravity meter, a water calorimeter, a differential scanning calorimeter(DSC), a transient hot wire method and rotating type viscometer, respectively. It was clarified that the additional properties law could be applied to the estimation of the density and specific heat of microencapsulated phase change material slurry and also the Euckens equation could be applied to the estimation of the thermal conductivity of this slurry.

Transient Heat Transfer from a Suddenly Heated Verical Thin Wire (수직열선 근처의 과도 열전달 에 관한 실험적 연구)

  • 최만수;유정열;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.4
    • /
    • pp.461-468
    • /
    • 1983
  • The series of experiments have been performed to study the transient heat transfer in air from a suddenly heated vertical thin wire. A platinum wire has been used as a resistance thermometer as well as a heating element to eliminate the disturbances in the measurements. The measured temperature as a function of time is compared with the calculated transient temperature with the aid of a pure conduction equation. The overshoot phenomena in terms of the Nusselt numbers have been detected and it is reasonable to define the delay time at which the onset of convection heat transfer occurs. The measured data are compared with the existing steady-state data and the agreements are reasonable within the comparable ranges.