• Title/Summary/Keyword: heat equation

Search Result 1,385, Processing Time 0.024 seconds

A Numerical Study of the Fluid Flow and Heat Transfer Characteristics of the Two-Dimensional Turbulent Impingement Jet with a Confinement Plate (제한면을 가지는 이차원 난류 충돌젯트의 유동 및 열전달 특성의 수치적 연구)

  • 강동진;오원태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1675-1683
    • /
    • 1995
  • A numerical study of the fluid flow and heat transfer characteristics of the two-dimensional impingement jet with a confinement plate has been carried out. The fluid flow was calculated by solving the full Navier-Stokes equation. In doing that, the well known SIMPLER algorithm was used and the trouble making convection term was discretized according to QUICKER scheme. The energy equation was simply solved by using the SOR method. For the Reynolds number of 10000, two channel heights, say 1.5 and 3.0 times the jet exit width, and two thermal boundary conditions constant wall temperature and constant wall heat flux were considered. Discrete heat sources were flush mounted along the impingement plate at a distance of 0, 2, 3, 4, 5, 6, 10, 12, times the jet exit width from the stagnation point. The length of each heat source is 4 times the jet exit width long. The Nusselt number averaged over each heat source was compared with experiment. Comparison shows that both calculations and experiment have the secondary peak of Nusselt number at downstream of stagnation point, even though there is a little quantitative difference in between. The difference is believed due to abscure thermal boundary condition in experiment and also accuracy of turbulence model used. The secondary peak is shown to be caused by rigorous turbulent flow motion generated as the wall jet flow is retarded and developes into the channel flow without flow reversal.

Numerical Analysis of Unsteady Heat Transfer for the Location Selection of Anti-freeze for the Fire Protection Piping with Electrical Heat Trace (소방 배관 동파방지용 열선의 위치 선정을 위한 비정상 열전달 수치해석)

  • Choi, Myoung-Young;Lee, Dong-Wook;Choi, Hyoung-Gwon
    • Fire Science and Engineering
    • /
    • v.28 no.1
    • /
    • pp.52-57
    • /
    • 2014
  • In this paper, the unsteady incompressible Navier-Stokes equations coupled with energy equation were solved to find out the optimal location of electrical heat trace for anti-freeze of water inside the pipe for fire protection. Since the conduction equation of pipe was coupled with the natural convection of water, the analysis of conjugate heat transfer was conducted. A commercial code (ANSYS-FLUENT) based on SIMPLE-type algorithm was used for investigating the unsteady flows and temperature distributions in water region. From the numerical experiments, the isotherms and the vector fields in water region were obtained. Furthermore, it was found that the lowest part of the pipe cross-section was an optimal position of electrical heat trace assuming the constant thermal expansion coefficient of water since the minimum temperature of the water with the position is higher than those with the other positions.

A Thermal Model for Silicon-on-Insulator Multilayer Structure in Silicon Recrystallization Using Tungsten Lamp (텅스텐 램프를 이용한 실리콘 재결정시의 SOI 다층구조에 대한 열적모델)

  • 경종민
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.5
    • /
    • pp.90-99
    • /
    • 1984
  • A onetimensional distribution of the temperature and the heat source in the SOI (silicon-on-insulator) multi-layer structure illuminated by tungsten lamps from both sides was obtained by solving the heat equation in steady state on a finite difference grid using successive over-relaxation method. The heat source distribution was obtained by considering such features as spectral components of the light source, multiple reflection at the internal interfaces, temperature and frequency dependence of the light absorption coefficient, etc. The front and back surface temperatures, which are boundary conditions for the heat equation, were derived from a requirement that they satisfy the radiation conditions. The radiation flux as well as the conduction flux was considered in modelling the thermal behaviour at the internal interfaces. Since the temperature and the heat source profiles are strongly dependent upon each other, the calculation of each profile was iterated using the updated profile of the other until they are consistent with each other. The experimental temperature at the front surface of the wafer as measured by Pyrometer was about 1200$^{\circ}$K, while the simulated temperature was 1120$^{\circ}$K.

  • PDF

EMBEDDING RIEMANNIAN MANIFOLDS VIA THEIR EIGENFUNCTIONS AND THEIR HEAT KERNEL

  • Abdalla, Hiba
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.939-947
    • /
    • 2012
  • In this paper, we give a generalization of the embeddings of Riemannian manifolds via their heat kernel and via a finite number of eigenfunctions. More precisely, we embed a family of Riemannian manifolds endowed with a time-dependent metric analytic in time into a Hilbert space via a finite number of eigenfunctions of the corresponding Laplacian. If furthermore the volume form on the manifold is constant with time, then we can construct an embedding with a complete eigenfunctions basis.

INVERSE PROBLEM FOR A HEAT EQUATION WITH PIECEWISE-CONSTANT CONDUCTIVITY

  • Gutman, S.;Ramm, A.G.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.651-661
    • /
    • 2010
  • We consider the inverse problem of the identification of a piecewise-constant conductivity in a bar given the extra information of the heat flux through one end of the bar. Our theoretical results show that such an identification is unique. This approach utilizes a "layer peeling" argument. A computational algorithm based on this method is proposed and implemented. The advantage of this algorithm is that it requires only 3D minimizations irrespective of the number of the unknown discontinuities. Its numerical effectiveness is investigated for several conductivities.

UNSTEADY HARTMANN FLOW WITH HEAT TRANSFER IN THE PRESENCE OF UNIFORM SUCTION AND INJECTION

  • Attia Hazem A.
    • The Pure and Applied Mathematics
    • /
    • v.13 no.1 s.31
    • /
    • pp.1-10
    • /
    • 2006
  • The unsteady Hartmann flow of an electrically conducting, viscous, incompressible fluid bounded by two parallel non-conducting porous plates is studied with heat transfer. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the plates while the fluid motion is subjected to a constant pressure gradient. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the magnetic field and the uniform suction and injection on both the velocity and temperature distributions is examined.

  • PDF

ANALYSIS OF HEAT TRANSFER OF INCLINED IMPINGING JETS ON A CONCAVE SURFACE (엇갈리게 기울어진 충돌제트들에 의한 오목면 상의 열전달 성능해석)

  • Heo, M.W.;Lee, K.D.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.11-16
    • /
    • 2011
  • Numerical analyses have been carried out to analyze the three-dimensional turbulent heat transfer by impingement jet on a concave surface with variation of geometric configurations. Three-dimensional Reynolds averaged Navier-stokes equations have been calculated using the shear stress transport turbulent model. The numerical results for heat transfer rate were validated in comparison with the experimental data. The distance between jet nozzles and angle of inclined jet nozzle were selected as the geometric variables. Area-averaged Nusselt numbers on concave surface are evaluated to find the characteristics of heat transfer with the two geometric variables. The heat transfer increases as the distance between jet nozzles increases, and the inclined impinging jets show much better heat transfer performance than the vertical impinging jet.

Study on Film-Boiling Heat Transfer of Subcooled Turbulent Liquid Film Flow on Horizontal Plate (수평 과냉 . 난류액막류의 막비등 열전달에 관한 연구)

  • 김영찬;서태원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.835-842
    • /
    • 2000
  • Film boiling heat transfer of the subcooled turbulent liquid film flow on a horizontal plate was investigated by theoretical and experimental studies. In the theoretical analysis, by solving the integral energy and momentum equations analytically, some generalized expressions for Nusselt number was deduced. Next, by comparing the deduced equations with the experimental data on the turbulent film boiling heat transfer of the subcooled thin liquid film flow, the semi-empirical relation between the Nusselt number based on the modified heat transfer coefficient and the Reynolds number was obtained. The correlating equation was very similar to that of the turbulent heat transfer in a single phase flow, and it was found that the heat transfer was dissipated to increase the liquid temperature.

  • PDF

Simple predictive heat leakage estimation of static non-vacuum insulated cryogenic vessel

  • Mzad, Hocine
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.3
    • /
    • pp.25-30
    • /
    • 2020
  • The diminishing of heat leak into cryogenic vessels can prolong the storage time of cryogenic liquid. With the storage of cryogenic liquid reducing, the heat leak decreases, while the actual storage time increases. Regarding to the theoretical analysis, the obtained results seems to be constructive for the cryogenic insulation system applications. This study presents a predictive assessment of heat leak occurring in non-vacuum tanks with a single layer of insulation. A Radial steady-state heat transfer, based on heat conduction equation, is taken into consideration. Graphical results show the thermal performance of the insulation used, they also allow us to choose the appropriate insulation thickness according to the shape and diameter of the storage tank.

Numerical simulations of radiative and convective heat transfer in the cylinder of a diesel engine (디이젤엔진내의 복사열전달 효과에 관한 수치해석적 연구)

  • 임승욱;김동우;이준식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.54-64
    • /
    • 1992
  • During combustion process in a diesel engine radiation heat transfer is the same order of magnitude as the convection heat transfer. An approximation of heat and momentum source distributions is applied at a level consistent with those used in modelling the soot distribution and the turbulence instead of modelling the fuel spray and the chemical kinetics. This paper illustrates a use of the third order spherical harmonics approximation to the radiative transfer equation and delta-Eddington approximation to the scattering phase function for droplets in the flow. Results are obtained numerically by a time marching finite difference scheme. This study aims to compare heat transfer with convection heat transfer and to investigate the importance of scattering by fuel droplets and of accounting for spatial variations in the extinction coefficient on the radiative heat flux distributions at the walls of a disc shaped diesel engine.

  • PDF