• Title/Summary/Keyword: heat deformation

Search Result 973, Processing Time 0.028 seconds

A Study on the Effect of Tool Thermal Deformation on Surface Roughness for Turning Process

  • Hong, Min-Sung;Lian, Zhe-Man;Kim, Dong-Joon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.262-267
    • /
    • 2000
  • During the turning of the workpiece, cutting heat causes thermal deformation of the cutting tool which influences the surface characteristics of the machined part. This paper presents a study of thermal deformation of the cutting tool. For this purpose, cutting tool is modeled based on Pro/Engineering and temperature and deformation are simulated by means of the finite element method. The thermal effect on the surface roughness profile is simulated by using surface-shaping system.

  • PDF

A Study on the Reduction of Fillet Welding Deformation by Applying the Tensioning Method (장력법을 이용한 필릿용접변형의 감소에 관한 연구)

  • Lee, Joo-Sung;Park, Jae-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.590-597
    • /
    • 2007
  • The portion of thin plate is expected to increases as to the development of design and fabrication technology. The weld-induced deformation is more serious in thin plates than in thick plates because heat affect zone of thin plates is wider than that of thick plates, and in addition internal and external constraints much more influence upon weld-induced deformation of thin plates. This paper is aimed at applying the mechanical tensioning method to fillet weld of thin plates to reduce the weld-induced deformation. For this purpose, fillet welding tests have been carried out for several thin plate specimens with varying plate thickness and magnitude of tensile load. From the present study, it has been found that the tensioning method is effective on reduction of weld-induced deformation.

A study on the thermal deformation characteristics of steel plates due to multi-line heating

  • Lee, Joo-Sung;Lee, Sang-Hoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.1
    • /
    • pp.48-59
    • /
    • 2018
  • This paper is mainly concerned with developing the formulae of predicting thermal deformation of steel plate due to multi-line heating. By investigating the results of line heating test and numerical analysis, reasonable heat flux model has been defined. Formulae of predicting the transverse shrinkage and the angular distortion as the dominant thermal deformation types in plate forming by line heating have been derived based on the results of line heating test and numerical analysis with varying plate thickness, heating speed and distance between torches. This paper illustrates how the derived formulae are used in investigating the effect of multi-line heating upon the thermal deformation and how they can be used in defining the limit distance with that there is no interacted effect between torches. This paper ends with describing the extension of the present study.

Thermal Deformation of Curved Plates by Line Heating (선상가열법에 의한 곡판의 열변형)

  • LEE JOO-SUNG;LIM DONG-YONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.33-38
    • /
    • 2005
  • It has been well documented that plate forming is one of the most important processes in shipbuilding. In the most shipyards, the line heating method is primarily used for plate forming. Since the heating process is carried out for the curved plate and not for the flat plate, a curvature effect on the final deformation must be considered in deriving the simplified prediction models for deformation. This paper investigates the effect of curvature along the heating line on the deformation of the plate. First of all, results of numerical analysis are compared with these of a line-heating test, to justify the elasto-plastic analysis procedure for the present study, which shows good agreement. Then, the present numerical procedure is applied to flat and curved plate models, to investigate the curvature effect on the heat transfer characteristics and deformation by line heating.

A Prediction of Out-of-Plane Deformation on a Deck Plate by Temperature Difference between Steel and Air (강판-대기 온도차에 의한 선체블록 주판의 부가 면외변형 추정)

  • Ha, Yun-Sok;Yi, Myung-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.3
    • /
    • pp.222-226
    • /
    • 2012
  • When ship blocks are erected or pre-erected, most blocks will be at outdoors where they are not protected from weather and exposed to ray of the sun. A deck plate compared to those in radiation heat transfer from the sun will have higher temperature than it of ambient air, and will expand more than lower laying structures whose temperatures are similar with air. But deck plates and under-structures are connected, so the deck plate will be under out-of-plane deformation rather than expand in length. In this study, we considered the temperature difference between air and plate as a major parameter of out-of-plane deformation, and analyzed how much additional deformation would take place. In addition, when a deformation could take place was also analyzed based on the initial deformed shape of deck plate. Because the accuracy inspections of deck plate will be done during daytime, conventional accuracy check results on sunny day could make us feel unfair. Thus resonable datum about momentary additional out-of-plane deformation due to environmental effects have been determined. The real deformation values can be specified even under enlarged deformations by radiation-expansion.

Development of Simple Prediction Model for V-groove butt welding deformation (V-개선 맞대기 용접변형에 대한 간이 예측 모델 개발)

  • 김상일
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.2
    • /
    • pp.106-113
    • /
    • 2004
  • The block assembly of ship consists of a certain type of heat processes such as cutting, bending, welding, residual stress relaxation and fairing. The residual deformation due to welding is inevitable at each assembly stage. The geometric inaccuracy caused by the welding deformation tends to preclude the introduction of automation and mechanization and needs the additional man-hours for the adjusting work at the following assembly stage. To overcome this problem, a distortion control method should be applied. For this purpose, it is necessary to develop an accurate prediction method which can explicitly account for the influence of various factors on the welding deformation. Systematic and quantitative theoretical works to clarify the effects of various factors on the welding deformation have rarely been found. Therefore, in this paper, the effects of various factors, such as welding process and gravity on the butt welding deformation have been investigated through a number of numerical analyses. In addition, this paper proposes a simplified analysis method to predict the butt welding deformation in actual plate structure. For this purpose, a simple prediction model for butt welding deformations has been derived based on numerical and experimental results through the regression analysis. Based on these results, the simplified analysis method has been applied to some examples to show its validity.

On the Weld-Induced Deformation Control of Ship's Thin Plate Block (I) (선체 박판구조의 용접변형 제어에 관한 연구(I))

  • Lee, Joo-Sung;Kim, Cheul-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.5
    • /
    • pp.496-503
    • /
    • 2007
  • Although weld-induced deformation is inevitable in shipbuilding, it is important to reduce it as low as possible during fabrication for a more efficient production of ships' blocks. The weld-induced deformation is more serious in thin plates than in thick plates because heat affect zone of thin plates is wider than that of thick plates, and in addition internal and external constraints much more influence upon weld-induced deformation of thin plates. This paper deals with the application of the mechanical tensioning method to butt weld of thin plates to reduce the transverse and longitudinal deformation. in order to investigate the quantitative effect of tensioning method upon the reduction of angular deformation and shrinkage in longitudinal and transverse direction of weld line, butt welding test have been carried out for several thin plate specimens with varying plate thickness and magnitude of tensile load. Numerical simulation has been also carried out to compare the weld-induced deformation and residual stress. From the present study, it has been found that the tensioning method is very effective on reduction of weld-induced residual stress as well as weld-induced deformation.

Pressure Drop of a Gasket Sealed Plate Type Heat Exchanger upon its Operating Conditions (Gasket 방식 판형 열교환기의 고.저온부 유량 및 압력차에 따른 압력강하 특성)

  • Ahn, Joon;Kim, Hyouck-Ju;Choi, Kyu-Sung;Song, Dae-Seok
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.189-194
    • /
    • 2009
  • In a gas engine based cogeneration system, heat is recovered from two parts, which are jacket water and exhaust gas. The heat from the jacket water is often recovered by a plate type heat exchanger and used for the room heating and/or hot water supply. Depending on the operating conditions of engine and heat recovery system, there should be imbalance in the flow rate and supply pressure between engine and heat recovery side of the heat exchanger. The imbalance cause the deformation of the plate, which affects the pressure drop characteristics. In the present study, the pressure drop inside the heat exchanger has been investigated in a 1/5 scaled test rig and compare with the experimental correlations, which are used for the design.

  • PDF

Measurements of Heat Transfer Distribution in Spray Cooling of Hot Steel Plate . (분무냉각에 의한 강판 열처리과정에 있어서 열전달분포의 측정)

  • 김영찬;유갑종;서태원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.10
    • /
    • pp.886-893
    • /
    • 2000
  • A good understanding of the heat transfer distribution is very important to suppress the deformation of steel products. In this study, the local heat transfer coefficients are experimentally investigated to understand the heat transfer distribution of thick steel plates with even flat spray nozzle. The steel slabs are cooled down from the initial temperature of about $1000^{\circ}C$ , and the local heat transfer coefficients and surface temperatures are calculated from the measured temperature-time history. The results show that the local heat transfer coefficients of spray cooling are dominated by the local droplet flow rate, and in proportion to becoming more distant from the center of heat transfer surface, the local heat transfer coefficients decrease with the decrease of the local droplet flow rate.

  • PDF

Thermal Durability Analysis Due to Material of Radiator Fan (라디에이터 팬의 재질에 따른 열 내구성 해석)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.789-794
    • /
    • 2013
  • In this study, the temperature, heat emission per unit time, and thermal stress or deformation of a radiator fan made of polyethylene or aluminum are analyzed for investigating its strength durability. Heat transfer in the case of the aluminum radiator fan is better than that in the case of the polyethylene radiator fan. Further, heat emission in the case of the aluminum fan is poorer than that in the case of the polyethylene fan. Moreover, because the thermal deformation of aluminum is much smaller than that of polyethylene, the thermal durability of the aluminum fan is better than that of the polyethylene fan. In an open space in front of the radiator and the closed space of the engine behind it, the thermal cooling effect of the polyethylene fan is better than that of the aluminum fan. Further, since polyethylene is lighter in weight than aluminum, polyethylene, as a nonmetallic plastic, is more suitable as a material of an automotive radiator. However, because of the higher strength durability of the aluminum fan, it is better than the polyethylene fan under high-temperature conditions or in the case of a complex pipe.