• Title/Summary/Keyword: heat deformation

Search Result 973, Processing Time 0.024 seconds

Effect of Thermal Deformation in Electromagnetic Chuck on the Grinding Accuracy (마그네틱 척의 열변형이 연삭 가공 정밀도에 미치는 영향)

  • 이찬홍;한진욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.44-48
    • /
    • 1996
  • This paper describes the effects of thermal deformation in electromagnetic chuck on the grinding accuracy. Gringing process is the last machining process and decisive in saving past other machining cost. The thermal deformation of grinding machine is unavoidable and affect seriously ginding accuracy. The thermaldeformation of electromagnetic chuck is one of important thermal problems. Heat generation of magnetic chuck is analyzed and measured. The temperature disturibution in chuck is elliptical form with high temperature in center of chuck. The thermal deformation form of chuck is changed with time to mountain form. The grinding experiment shows that the thermal deformation of magnetic chuck influence strongly machining accuracy as much as the headstock

  • PDF

Effect of Bonding Temperature and Bonding Pressure on Deformation and Tensile Properties of Diffusion Bonded Joint of STS304 Compact Heat Exchanger (STS304 콤팩트 열교환기 고상확산접합부의 접합부 변형과 인장성질에 미치는 접합온도 및 접합압력의 영향)

  • Jeon, Ae-Jeong;Yoon, Tae-Jin;Kim, Sang-Ho;Kim, Hyeon-Jun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.46-54
    • /
    • 2014
  • In this study, the effect of bonding temperature and bonding pressure on deformation and tensile properties of diffusion bonded joint of STS304 compact heat exchanger was investigated. The diffusion bonds were prepared at 700, 800 and $900^{\circ}C$ for 30, 60 and 90 min in pressure of 3, 5, and 7 MPa under high vacuum condition. The height deformation of joint decreased and the width deformation of joint increased with increasing bonding pressure at $900^{\circ}C$. The ratio of non-bonded layer and void observed in the joint decreased with increasing bonding temperature and bonding pressure. Three types of the fracture surface were observed after tensile test. The non-bonded layer was observed in diffusion bonded joint preformed at $700^{\circ}C$, the non-bonded layer and void were observed at $800^{\circ}C$. On the other hand, the ductile fracture occurred in diffusion bonded joint preformed at $900^{\circ}C$. Tensile load of joint bonded at $800^{\circ}C$ was proportional to length of bonded layer and tensile load of joint bonded at $900^{\circ}C$ was proportional to minimum width of pattern. The tensile strength of joint was same as base metal.

Analyses of Creep Properties of Ni-base Superalloy Powders as Cooling Rate after Solid Solution Heat Treatment (니켈기 초내열합금 분말의 고용화 열처리 후 냉각속도에 따른 크리프특성 분석)

  • Jun, Chan;Lee, Youngseon;Bae, Byeong Beom;Kim, Hong-Kyu;Hong, Seong Suk;Kim, Donghoon;Yun, Jondo;Yoon, Eun Yoo
    • Journal of Powder Materials
    • /
    • v.23 no.3
    • /
    • pp.247-253
    • /
    • 2016
  • In this study, solid solution heat treatment of consolidated nickel-based superalloy powders is carried out by hot isotactic pressing. The effects of the cooling rate of salt quenching, and air cooling on the microstructures and the mechanical properties of the specimens are analyzed. The specimen that is air cooled shows the formation of serrated grain boundaries due to their obstruction by the carbide particles. Moreover, the specimen that is salt quenched shows higher strength than the one that is air cooled due to the presence of fine and close-packed tertiary gamma prime phase. The tensile elongation at high temperatures improves due to the presence of grain boundary serrations in the specimen that is air cooled. On the contrary, the specimen that is salt quenched and consists of unserrated grain boundaries shows better creep properties than the air cooled specimen with the serrated grain boundaries, due to the negative creep phenomenon.

Optimization of Thermal Deformation in Probe Card (프로브 카드의 열변형 최적화)

  • Chang, Yong-Hoon;Yin, Jeong-Je;Suh, Yong-S.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4121-4128
    • /
    • 2010
  • A probe card is used in testing semiconductor wafers. It must maintain a precise location tolerance for a fine pitch due to highly densified chips. However, high heat transferred from its lower chuck causes thermal deformations of the probe card. Vertical deformation due to the heat will bring contact problems to the pins in the probe card, while horizontal deformation will cause positional inaccuracies. Therefore, probe cards must be designed with proper materials and structures so that the thermal deformations are within allowable tolerances. In this paper, heat transfer analyses under realistic loading conditions are simulated using ANSYS$^{TM}$ finite element analysis program. Thermal deformations are calculated based on steady-state temperature gradients, and an optimal structure of the probe card is proposed by adjusting a set of relevant design parameters so that the deformations are minimized.

Effects of Root Gap on Residual Stresses and Deformation in the Multi-Pass Weld of Thick Plates for Steel Bridge (교량용 후판 다층용접시 잔류응력과 변형에 미치는 루트간격의 영향)

  • 장경복;김하근;강성수
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.88-96
    • /
    • 1999
  • The effects of root gap on welding residual stress and deformation are dealt with the multi-pass weldment with three kinds(0, 6, 30mm) of root gap by F.E.M common code, and then compared with experiment data. In this analysis, an 100% ramp heat input model was used to avoid numerical convergence problem due to an instantaneous increase in temperature near the fusion zone, and the effect of a moving arc in a two dimensional plane was also included. During the analysis, a small time increment was applied in a period with instantaneous temperature fluctuation while a large time increment was used in the rest period. The residual stress is distributed as symmetric types and maximum value is also equivalent when the weldment with 0mm and 6mm root gap is welded. In the case of 30mm root gap welding, the distribution of the residual stress extends over a wide range as asymmetric types due to the built-up weld, and most of the residual stress is biased in the side of a built-up weld part. In case of 0mm gap welding and 6mm gap welding, a little angular distortion occurs, but the level of deformation is small. When the weldment with 30mm root gap is welded, the angular deformation of the asymmetric types, however, occurs larger than the other specimens. The experimental and the analytic results show good coincidence and indicate that the welding residual stress and deformation distribution of 30 mm root gap specimen may be asymmetric and the amplitude is larger than those of root gap specimen under standard.

  • PDF

Analysis of Thermal Stress and Deformation of Casting Roll in Twin Roll Strip Casting Process (쌍롤형 박판주조공정에서 주조 롤의 열응력 및 열변형 해석)

  • Park, Cheol-Min;Kim, Wan-Su;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1943-1951
    • /
    • 2002
  • The casting roll design is one of the most important requirements in twin roll strip casting process. Coupled analyses of heat transfer and deformation for the cast roll are carried out by use of the finite element program MARC to examine the thermal stress and deformation. The effects of several factors on thermal stress and deformation are also investigated. The amount of thermal stress increases when the ni thickness increases and when the casting speed and the copper sleeve thickness decrease.

A Study on the Effect of Tool Thermal Deformation on Surface Profiles for Turing Process (선삭에서 공구열변형이 표면 형상에 미치는 영향에 관한 연구)

  • 염철만;신근하;홍민성
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.33-39
    • /
    • 2001
  • During the turning of the workpiece, cutting heat causes thermal deformation of the cutting tool which influences the surface characteristics of the machined part. This paper presents a study of thermal deformation of the cutting tool. For this purpose, cutting tool is modeled based of Pro/Engineering and the thermal deformation is simulated by means of the finite element method. The thermal effect on the surface roughness profile is simulated by using surface-shaping system. It has been shown that the results of simulation are similar to those of experiment.

  • PDF

A Study of the Development of a simulator for Deformation of the Steel Plate in Line Heating (선상가열시 강판의 변형 추정도구 개발을 위한 기초연구)

  • Seo, Do-Won;Yang, Pack-Dal-Chi
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.213-216
    • /
    • 2006
  • During the last decade several different methods have been proposed for the estimation of thermal deformations in the line heating process. These are mainly based on the assumption of residual strains in the heat-affected zone or simulated relations between heating conditions and residual deformations. However these results were restricted in the application from the too simplified heating conditions or the shortage of the data. The purpose of this paper is to develop a simulator of thermal deformation in the line heating using the artificial neural network. Two neural network predicting the maximum temperature and deformations at the heating line are studied. Deformation data from the line heating experiments are used for learning data for the network. It was observed that thermal deformation predicted by the neural network correlate well with the experimental result.

  • PDF

Application of Tensioning Method for Filet Welding Deformation Reduction (필릿 용접변형 감소를 위한 장력법의 적용)

  • Lee, Joo-Sung;Park, Jae-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.197-200
    • /
    • 2006
  • The portion of thin plate is expected to increases as to the development of design and fabrication technology. The weld-induced deformation is more serious in thin plates than in thick plates because heat affect zone of thin plates is wider than that of thick plates, and in addition internal and external constraints much more influence upon weld-induced deformation of thin plates. This paper deals with the application of the mechanical tensioning method to fillet weld of thin plates to reduce the weld-induced deformation. For this, fillet welding test have been carried out for several thin plate specimens with varying plate thickness and magnitude of tensile load. From the present study, it has been found that the tenssoning method is effective on reduction of weld-induced deformation.

  • PDF

Life Estimation of Hot Forging Die by Plastic Deformation and Wear (소성변형 밀 마멸에 대한 열간 단조 금형의 수명 평가)

  • 이현철;김병민;김광호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.66-75
    • /
    • 2003
  • This paper describes about the estimation method of die lift by wear and plastic deformation in hot forging process. The thermal load and the thermal softening are happened by the high temperature in hot forging process. Tool lift decreases considerably due to the softening of the surface layer of a tool caused by high thermal load and long contact time between tool and billet. Also, tool life is to a large extent limited by wear, heat crack and plastic deformation in hot forging process. Above all, the main factors which affects die accuracy and tool lift are wear and the plastic deformation of a die. The new developed technique for predicting tool life applied to estimate the production quantity for a spindle component and these techniques assist to improve the tool life in hot forging process.