• 제목/요약/키워드: heat combination

검색결과 686건 처리시간 0.022초

Performance Variation of a Combined Cycle Power Plant by Coolant Pre-cooling and Fuel Pre-heating (냉각공기 예냉각과 연료예열에 의한 복합발전 시스템의 성능변화)

  • Kwon, Ik-Hwan;Kang, Do-Won;Kim, Tong-Seop;Kim, Jae-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • 제15권3호
    • /
    • pp.57-63
    • /
    • 2012
  • Effects of coolant pre-cooling and fuel pre-heating on the performance of a combined cycle using a F-class gas turbine were investigated. Coolant pre-cooling results in an increase of power output but a decrease in efficiency. Performance variation due to the fuel pre-heating depends on the location of the heat source for the pre-heating in the bottoming cycle (heat recovery steam generator). It was demonstrated that a careful selection of the heat source location would enhance efficiency with a minimal power penalty. The effect of combining the coolant pre-cooling and fuel pre-heating was also investigated. It was found that a favorable combination would yield power augmentation, while efficiency remains close to the reference value.

The Effect of Alloying Elements and Heat Treatment on Mechanical Properties of ADI (ADI의 기계적 성질에 미치는 합금원소 및 열처리의 영향)

  • Kim, Sug-Won;Han, Sang-Won;Woo, Kee-Do
    • Journal of the Korean Society for Heat Treatment
    • /
    • 제11권2호
    • /
    • pp.121-130
    • /
    • 1998
  • The effects of alloying elements(Mo, Cu, Ni) and austempering temperature conditions on the microstructural morphologies and mechanical properties in austempered ductile cast iron has been investigated. The austempering at $350^{\circ}C$ for 2hrs after austenitizing at $900^{\circ}C$ for 2hrs in all specimens with various alloying elements was optimum because the good combination of tensile and yield strength, hardness and impact value was obtained. The microstructures of these ADIs treated by a forementioned austempering condition are nearly a mixture type of needle and feathery bainite. Among those alloys, Mo-Cu alloyed DCI had the best optimum mechanical properties of hardness and toughness for automobile parts by austempering treatment for 2hrs at $900^{\circ}C$ followed by $350^{\circ}C$ for 2hrs.

  • PDF

Transient Analysis of Hybrid Rocket Combustion by the Zeldovich-Novozhilov Method

  • Lee, Changjin;Lee, Jae-Woo;Byun, Do-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제17권10호
    • /
    • pp.1572-1582
    • /
    • 2003
  • Hybrid rocket combustion has a manifestation of stable response to the perturbations compared to solid propellant combustion. Recently, it has revealed that the low frequency combustion instability about 10 Hz was occurred mainly due to thermal inertia of solid fuel. In this paper, the combustion response function was theoretically derived by use of ZN (Zeldovich-Novozhilov) method. The result with HTPB/LOX combination showed a quite good agreement in response function with previous works and could predict the low frequency oscillations with a peak around 10 Hz which was observed experimentally. Also, it was found that the amplification region in the frequency domain is independent of the regression rate exponent n but showed the dependence of activation energy. Moreover, the response function has shown that the hybrid combustion system was stable due to negative heat release of solid fuel for vaporization, even though the addition of energetic ingredients such as AP and Al could lead to increase heat release at the fuel surface.

Inactivation of Spore-Forming Bacteria by Gamma Irradiation (감마선 조사에 의한 유포자 세균의 불활성화)

  • 변명우;권오진;육홍선
    • Journal of Food Hygiene and Safety
    • /
    • 제11권3호
    • /
    • pp.197-201
    • /
    • 1996
  • D10 values obtained for radiation alone in Bacillus subtilis and Clostridium perfrigenes were 0.35-0.48 kGy in vegetative cells, and 2~2.08 kGy in spores, respectively. Irradiation dose of 24 kGy completely inhibited spores. In the case of heat treatment, D50, 60 values ranged from 10 to 14 minutes in vegetative cells, and D70, 80, 90 values ranged from 10 to 140 minutes in spores. In the case of combined treatment with heat and radiation, D10 values ranged form 1 to 1.25 kGy in vegetative cells, and from 3.42 to 3.61 kGy in spores. Thus, resistance of cells to gamma radiation did not seem to be influences by pre-heating.

  • PDF

Temperature Control of Mass-Concrete Structure with Pipe Cooling or Sheet Curing. (시트양생 및 파이프 쿨링에 의한 매스콘크리트 구조물의 온도제어)

  • 차홍윤;김은경;김래현;신치범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.263-267
    • /
    • 1995
  • The usual methods for the temperature control of mass-concrete structures include the use of low-heat cement, pre-cooling, post-cooling, or sheet curing. In order to control the heat of hydration during the construction of mass-concrete structures, the combination of the above methods is commonly employed. For the construction of mass-concrete structures such as massive pier or anchor, it is necessary to control the curing temperature with pipe cooling. In this study, the method of analysis on the effect of pipe of was proposed to prevent the thermal cracking due to heat of hydration In addition the effect of covering the concrete surface with blanket insulation was investigated. The results of the present study may be useful for the prediction of curing temperature of mass-concrete structures and the reasonable construction management.

  • PDF

A Study on Radiation Heat Transfer and the Characteristics of Oxygen Enriched Double Inversed Diffusion Flame (산소부하 이중 역 확산화염의 특성 및 복사열전달에 관한 연구)

  • Lee, Sung-Ho;Hwang, Sang-Soon
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제21회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.101-112
    • /
    • 2000
  • An Experimental study of oxygen enriched double inversed diffusion flame was conducted to understand the flame characteristics and radiation heat transfer. The infrared radiation meter was used to measure of various combination of fuel, air and pure oxygen. The results show that oxygen enriched double inversed diffusion flame is very effective to increase of thermal radiation and proper addition of pure oxygen in air flow can intensity thermal radiation of flame. And it can be found that oxygen enriched double inversed diffusion flame could give benefits of cost effective and very high energy saving.

  • PDF

A Study on Radiation Heat Transfer and Characteristics of Oxygen Enriched Double Inversed Diffusion Flame

  • Lee, Sung-Ho;Hwang, Sang-Soon
    • Journal of the Korean Society of Combustion
    • /
    • 제6권2호
    • /
    • pp.50-64
    • /
    • 2001
  • An experimental study of oxygen enriched double inversed diffusion flame was conducted to understand the flame characteristics and radiation heat transfer. The infrared radiation meter was used to measure of various combination of fuel, air and pure oxygen. The results show that oxygen enriched double inversed diffusion flame is very effective to increase of thermal radiation and proper addition of pure oxygen in air flow can intensify thermal radiation of flame. And it can be found that oxygen enriched double inversed diffusion flame could give benefits of cost effective and very high energy.

  • PDF

Thermo-mechanical damage of tungsten surfaces exposed to rapid transient plasma heat loads

  • Crosby, Tamer;Ghoniem, Nasr M.
    • Interaction and multiscale mechanics
    • /
    • 제4권3호
    • /
    • pp.207-217
    • /
    • 2011
  • International efforts have focused recently on the development of tungsten surfaces that can intercept energetic ionized and neutral atoms, and heat fluxes in the divertor region of magnetic fusion confinement devices. The combination of transient heating and local swelling due to implanted helium and hydrogen atoms has been experimentally shown to lead to severe surface and sub-surface damage. We present here a computational model to determine the relationship between the thermo-mechanical loading conditions, and the onset of damage and failure of tungsten surfaces. The model is based on thermo-elasticity, coupled with a grain boundary damage mode that includes contact cohesive elements for grain boundary sliding and fracture. This mechanics model is also coupled with a transient heat conduction model for temperature distributions following rapid thermal pulses. Results of the computational model are compared to experiments on tungsten bombarded with energetic helium and deuterium particle fluxes.

Design Optimization of a Printed Circuit Heat Exchanger Using Surrogate Models (대리모델들을 이용한 인쇄형 열교환기의 최적설계)

  • Lee, Sang-Moon;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • 제14권5호
    • /
    • pp.55-62
    • /
    • 2011
  • Shape optimization of a Printed circuit heat exchanger (PCHE) has been performed by using three-dimensional Reynolds-Averaged Navier-Stokes (3-D RANS) analysis and surrogate modeling techniques. The objective function is defined as a linear combination of effectiveness of the PCHE term and pressure drop in the cold channels of the PCHE. The cold channel angle and the ellipse aspect ratio of the cold channel are used as design variables for the optimization. Design points are selected through Latin-hypercube sampling. The optimal point is determined through surrogate-based optimization method which uses 3-D RANS analyses at design points. The results of three types of surrogate model are compared each other. The results of the optimizations indicate improved performance in friction loss but low performance in effectiveness than the reference shape.

Numerical Analysis on Heat Transfer of Viscoelastic Fluid including Buoyancy Effect (부력의 영향을 포함한 점탄성 유체의 열전달에 관한 수치해석)

  • Sohn C. H.;Ahn S. T.;Jang J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 추계 학술대회논문집
    • /
    • pp.114-120
    • /
    • 1998
  • The present numerical study investigates flow characters and heat transfer enhancement by the viscoelastic-driven secondary flow and buoyancy effect in a 2:1 rectangular duct. Three versions of thermal boundary conditions involving difference combination of heated walls and adiabatic walls are analyzed in this study. The Reiner-Rivlin model is adopted as a viscoelastic fluid model to simulate the secondary flow and temperature-dependent viscosity model is used. Calculated Nusselt numbers are very good agreement with experimental results for reported viscoelastic fluids. It is found that the heat transfer enhancement is mainly caused by the viscoelastic-driven secondary flow and buoyancy-induced secondary flow play a role of promoting this effect.

  • PDF