• Title/Summary/Keyword: heat capacity

Search Result 1,947, Processing Time 0.03 seconds

Heat Exchanging Performance as Affected by Arrangement of Heat Exchanging Pipe (열회수장치의 열교환 파이프배치 형식별 열교환 성능)

  • 윤용철;강종국;서원명
    • Journal of Bio-Environment Control
    • /
    • v.11 no.3
    • /
    • pp.101-107
    • /
    • 2002
  • This study was carried out to improve the performance of heat recovery device attached to exhaust gas flue connected to combustion chamber of greenhouse heating system. Three different units were prepared far the comparison of heat recovery performance; A-type is exactly the same with the typical one fabricated for previous study of analyzing heat recovery performance in greenhouse heating system, other two types (B-type and C-type) modified from the control unit are different in the aspects of airflow direction (U-turn airflow) and pipe arrangement. The results are summarized as follows ; 1. In the case of Type-A, when considering the initial cost and current electricity fee required for system operation, it was expected that one or two years at most would be enough to return the whole cost invested. 2. Type-B and Type-C, basically different with Type-A in the aspect of airflow pattern, are not sensitive to the change of blower capacity with higher than 25m$^3$.min$^{-1}$ . Therefore, heat recovery performance was not improved so significantly with the increment of blower capacity. This was assumed to be that air flow resistance in high air capacity reduced the heat exchange rate as well. Never the less, compared with control unit, resultant heat recovery rate of Type-B and Type-C was improved by about 5% and 13%, respectively 3. Desirable blower capacity of these heat recovery units experimented were expected to be about 25m$^3$.min$^{-1}$ , and at the proper blower capacity, U-turn airflow units showed better heat recovery performance than control unit. But, without regard to the type of heat recovery unit, it was recommended that comprehensive consideration of system's physical factors such as pipe arrangement density, unit pipe length and pipe thickness, etc., was required for the optimization of heat recovery system in the aspects of not only energy conservation but economic system design.

Performance Analysis of R744 (Carbon Dioxide) Transcritical Refrigeration System Using Internal Heat Exchanger (내부 열교환기를 이용한 R744용 초임계 냉동사이클의 성능 분석)

  • Son, Chang-Hyo;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.459-465
    • /
    • 2009
  • This paper considers the influence of internal heat exchangers to the efficiency of a refrigerating system. These internal heat exchangers(liquid-suction or suction-line heat exchangers) can, in some cases, yield improved system performance while in other cases they degrade system performance. A steady state mathematical model is used to analysis the performance characteristics of refrigeration system with internal heat exchanger. The influence of operating conditions, such as gas cooler pressure and evaporation temperatures, superheat in the evaporator and temperature of gas cooler outlet, to optimal dimensions of the heat exchanger is also analyzed in the paper. The main results were summarized as follows : the mass flowrate of R744, inner diameter tube and length of internal heat exchanger, and effectiveness have an effect on the cooling capacity, compressor work and RCI(Relative capacity index) of this system. With a thorough grasp of these effect, it is necessary to design the R744 compression refrigeration cycle using internal heat exchanger.

Multi type heat pump system computer simulation and experimental verification (멀티형 히트펌프 시스템 컴퓨터 시뮬레이션과 실험적 검증)

  • 한도영;정민영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.12-19
    • /
    • 2000
  • The multi type heat pump system may provide more energy savings and better environmental conditions than the single type heat pump system may do. In order to design a multi type heat pump system, it may be recommended to develop the system simulation program, which can predict the characteristics of the system such as unit capacities, power consumptions, and system COP's. In this study, the steady state simulation program of the multi type heat pump system was developed. The results from the simulation program were compared with those from the experimental tests which were performed in the environmental chamber, Cooling tests show 3.11% and 0.94% of error in capacity and COP, and heating tests show 3.30% and 1.90% of error in capacity and COP, respectively. Therefore, the steady state simulation program developed for this study can effectively be used for the design and the performance prediction of the multi type heat pump system.

  • PDF

Study on the Capacity Design Tool Development for Open-loop Ground Heat Exchanger (개방형 지중열교환기 용량 설계 방법에 관한 연구)

  • Ryu, Hyung-Kyou;Choi, Seung-Hyuck;Yun, Hi-won;Gim, Yu-Seung
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.2
    • /
    • pp.9-15
    • /
    • 2017
  • When applying geothermal systems in cities such as seoul where high density development prevails, the selection of geothermal system capable of obtaining a large capacity in the limited grounds is necessary. In this study, an easy-to-use design tool is developed in the form of spreadsheet by applying the calculation theory of existing closed-loop vertical ground heat exchanger that can be used in the early design stage of the open-loop ground heat exchanger. By only using the maximum cooling and heating load, it is possible to calculate optimal design open-loop ground heat exchanger. Further research is needed, we are plan to improve the program considering the heat loss of groundwater flowing in the inner casing, G-Function for Open-Loop, and verification by applying actual projects.

Theoretical Analysis of a Rotary Heat Exchanger Based on a Simplified Model (단순모델에 의한 회전형 열교환기 이론해석)

  • Son, Sung Gyun;Kim, Yongchan;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.409-417
    • /
    • 2015
  • A simplified rotary heat-exchanger model was developed with an assumption of a linear temperature distribution along the flow direction. Based on the model, the exact fluid solution and solid temperature variations were obtained and verified from a comparison with previous numerical studies. The heat transfer in the rotary heat exchanger was investigated using the theoretical solutions. The heat exchanger's effectiveness was shown to be saturated, with a rotational-speed increase that is higher than a critical value that is solely dependent on the thermal capacity of the solid matrix but independent of the fluid flow rate; the saturated value of the effectiveness was determined only by the NTU of the heat exchanger. Where the thermal diffusivity of the solid matrix is so slight that the thermal penetration depth becomes smaller than the matrix thickness, the effective thermal capacity of the solid matrix decreased according to the penetration depth.

Thermal Properties of Semiconducting Materials for Power Cable by Carbon Nanotube Content (CNT 함량에 따른 전력케이블용 반도전층 재료의 열적 특성)

  • Yang, Jong-Seok;Lee, Kyoung-Yong;Shin, Dong-Hoon;Park, Bae-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.12
    • /
    • pp.570-575
    • /
    • 2006
  • In this paper, we have investigated thermal properties by changing the content of carbon nanotube, which is component part of semiconductive shield in underground power transmission cable. Heat capacity (${\Delta}H$), glass transition temperature (Tg) and melting temperature (Tm) were measured with the samples of eight, through DSC (Differential Scanning Calorimetry), and the measurement ranges of temperature selected from $-100[^{\circ}C]\;to\;100[^{\circ}C]$ with heating temperature selected per $4[^{\circ}C/min]$ Also, high temperature, heat degradation initiation temperature, and heat weight loss were measured by TGA (Thermogravimetric Analysis) in the temperature from $0[^{\circ}C]\;to\;700[^{\circ}C]$ with rising temperature of $10[^{\circ}C/min]$. As a result, the Glass transition temperatures of the sample were showed near $-20[^{\circ}C]{\sim}25[^{\circ}C]$, and the heat capacity and melting temperature from the DSC was increased according to increasing the content of carbon nanotube, while, thermal diffusivity was increased according to increasing the content of carbon nanotube. Also, heat degradation initiation temperature from the TGA results was increasing according to increasing the content of carbon nanotube with CNT/EEA. Therefore, heat stabilities of EVA, which contained the we VA (vinyl acetate), showed the lowest.

Performance Enhancement of the Heat Pump Using the Refrigerant Subcooling System (냉매 과냉각 시스템을 이용한 열펌프의 성능향상에 관한 연구)

  • 손창효;윤찬일;박승준;이동건;오후규
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.106-111
    • /
    • 2001
  • The performance characteristics of heat pump system using the new refrigerant subcooling system were investigated. The new heat pump system has the ice storage tank to accumulate the latent heat of the refrigerant during the night-time. The heat is released to subcool the saturated refrigerant liquid at the outlet of a condenser in the daytime. The experimental apparatus is a well-instrumented heat pump which consisted of a refrigerant loop and a coolant loop. The test sections(condenser and evaporator) were made of tube-in-tube heat exchanger with the horizontal copper tube of 12.7[mm] outer diameter and 9.5[mm] inner diameter. The evaporating temperatures ranged from $-5[^{\circ}C]$ to $0[^{\circ}C]$ and the subcooling degrees of the refrigerant varied from $15[^{\circ}C]$ to $25[^{\circ}C]$. The test of the ice storage was carried out at evaporating temperature of $-10[^{\circ}C]$ and the ice storage mode is an ice-on-coil type. The main results were summarized as follows ; The refrigerant mass flow rate and compressor shaft power of the heat pump system were independent of the subcooling degrees. The cooling capacity o the heat pump system increases as the evaporating temperature and subcooling degree increases. The cooling capacity of the heat pump system is about 25 to 30% higher than that of normal heat pump system. The COP of the heat pump system which subcooled the refrigerant liquid at the outlet of the condenser is about 28% higher than that of the normal heat pump system.

  • PDF

Experimental Study on Performance Comparison of Air-Conditioner with PF Heat Exchanger (PF 열교환기를 적용한 공조기의 성능 비교 실험연구)

  • Kwon, Young-Chul;Park, Yoon-Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.3
    • /
    • pp.470-475
    • /
    • 2009
  • In the present study, the heat transfer characteristics of the fin-tube and PF heat exchangers and the performances of the air-conditioner are experimentally investigated. Also, Cooling Seasonal Performance Factor(CSPF) of the air-conditioner is evaluated. For the heat exchanger experiment, the heat transfer and pressure drop are obtained. For the air-conditioner experiment, the cooling capacity, input power and COP are obtained. The air-enthalpy calorimeter and the constant temperature water bath are used. As the inlet air velocity increases, the heat transfer rate and pressure drop of the heat exchanger increased. PF heat exchanger has smaller refrigerant weight and larger capacity and COP than the fin-tube heat exchanger. The performance of PF-2 heat exchanger with the squarer fin is more excellent than that of PF-1 heat exchanger with the triangler fin. Also, CSPF of the fm -tube and PF heat exchanger is evaluated.

A Third-order analysis of VM heat pumps (VM 열펌프의 3차해석)

  • Kang, Y.G.;Jeong, E.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.229-238
    • /
    • 1997
  • A third-order simulation model of VM heat pumps has been developed. This model allows consideration of the major losses such as heat conduction losses through regenerators and displacers, pumping losses and wall-to-gas heat transfer losses in working volumes, in addition to the heat exchanger and regenerator losses. The working volume was divided into 12 control volumes and conservation equations of mass and energy were applied to each control volume. Pressure drop was considered in regenerators only. Thermodynamic behavior of working fluid in a VM heat pump was investigated and effects of major losses on the performance of a VM heat pump were shown.

  • PDF

Air Side Heat Transfer Charactieristics of Tension Wound Transverse Fin with Minichannel (장력 감김으로 부착된 가로방향 휜-미니채널의 공기측 열전달 특성)

  • Kim Jong-Soo;Im Yong-Bin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.701-706
    • /
    • 2005
  • Pipes, tubes. and tubular sections with external transverse high fins have been used extensively for heating cooling, and degumidifying air and other gases. This work was performed to investigate an air side heat transfer charactieristics of minichannel with tension wound transverse fin. This estimate was confirmed conversion heat capacity the air side surface area enlargement and heat transfer charactieristics performed available inlet tube side hot water mass flux or outlet tube side air frontal air velocity. The most suitable tension wound transverse finned minichannel was measured extremely low in air side pressure drop and fin effectiveness $3.3\~4.4$. The pressure drop $0.9\~2.8Pa$ was ranged frontal air velocity $0.5\~1.2m/s$. It is also appeared that heat transfer in air side could be better conversion heat area which has been increased $330\%$ of heat capacity compared with the bare tube.