• 제목/요약/키워드: heat Transfer

검색결과 7,585건 처리시간 0.028초

마이크로핀관내 유동 양식과 응축 열전달 특성 연구 (Experiments on Condensation Heat Transfer Characteristics and Flow Regime Inside Microfin Tubes)

  • 한동혁;이규정
    • 설비공학논문집
    • /
    • 제13권7호
    • /
    • pp.602-611
    • /
    • 2001
  • Experiments on the condensation heat transfer characteristics inside a smooth and a microfin tube with R410A/R22 are performed in this study. The test tubes 7/9.52 mm in outside diameters and 3m in length are used. Varying the mass flux of the refrigerant and the condensation temperatures, the average heat transfer coefficients and pressure drop are investigated. Most flows in this study are in the annular and/or wavy flow regime. It is shown that the heat transfer is enhanced and the pressure drops are larger in the microfin tube than the smooth tube. From the heat transfer enhancement coefficients and the pressure drops, it is found that the high heat transfer enhancement factors are obtained in the range of small mass flux while the penalty factors are almost equal. Experiments results show that average heat transfer coefficients of R410A is larger than that of R22 and pressure drop of R410A is less than R22.

  • PDF

전열면 자세가 응축 열전달에 미치는 영향에 관한 연구 (A Study on the Effect of the Heat Transfer Surface Position to the Condensation heat Transfer)

  • 조시기
    • 설비공학논문집
    • /
    • 제13권1호
    • /
    • pp.25-29
    • /
    • 2001
  • A study has been conducted to investigate the effect of the heat transfer surface position in the range of dropwise condensation, filmwise condensation, and glacial condensation. For dropwise condensation promoter, the heat transfer surface was evaporated by gold. As a result, heat transfer rate is almost same where the position of heat transfer surface is between 45 and 135 degree. It is found that heat transfer rate was reduced as subcooled degree was increased. And it is also found that if the subcooled degree becomes lower, the position of heat transfer surface is more effective. Adversely, if the subcooled degree becomes higher, the effectiveness of surface position is getting relatively lower. Regardless of the position, the transition temperatures from dropwise condensation to filmwise condensation is in the vicinity of 80K.

  • PDF

충돌수분류계(衝突水噴流系)에서 와이어 메쉬를 사용(使用)한 열전달(熱傳達) 증진(增進)에 관(關)한 연구(硏究) (A Study on the Heat Transfer Augmentation by Using Wire-mesh Impinging Water Jet)

  • 나기대
    • 설비공학논문집
    • /
    • 제6권3호
    • /
    • pp.291-301
    • /
    • 1994
  • This paper presents the promotion of heat transfer through the use of wire-mesh screens. To improve heat transfer in an impingement water system, the wire-mesh screens are installed between the nozzle-to-heater surfaces. When the wire-mesh screens are not employed, this report exhibits the maximum heat transfer and the secondary maximum value at the stagnation point. But in case of using the wire-mesh screens, the transfer coefficient value of maximum heat exists at the stagnation point, and the second maximum value doesn't occur. Therefore, the heat transfer is more improved than 4~6 times that of the mean Nusselt numbers of simple water jet system, Also, within the region presented in this study, the heat transfer was promoted by using the wire-mesh screens at the stagnation point ; thus, the heat transfer was more increased than 6-7. 5 times that of simple water jet system.

  • PDF

탄화수소 냉매의 수평 원관내 응축열전달 특성 (Condensing heat transfer characteristics of hydrocarbon refrigerants in a horizontal tube)

  • 장영수;김민수;노승탁
    • 대한기계학회논문집B
    • /
    • 제21권12호
    • /
    • pp.1656-1667
    • /
    • 1997
  • Condensing heat transfer characteristics of hydrocarbon refrigerants are experimentally investigated. Single component hydrocarbon refrigerants (propane, isobutane, butane and propylene) and binary mixtures of propane/isobutane and propane/butane are considered as test fluids. Local condensing heat transfer coefficients of selected refrigerants are obtained from overall conductance measurement. Average heat transfer coefficients at different mass fluxes and heat transfer rates are shown and compared with those of R22. Pure hydrocarbon refrigerants have higher values of heat transfer coefficient than R22. It is also found that there is a heat transfer degradation for hydrocarbon mixtures due to composition variation during condensation. Measured condensing heat transfer coefficients are compared with predicted values by available correlations. An empirical correlation for pure and mixed hydrocarbon is developed, and it shows good agreement with experimental data.

전산유동가시화를 활용한 웨이퍼 이송장치의 복사열전달에 관한 연구 (A Study on Radiation Heat Transfer of Wafer Transfer Module Using Computational Flow Visualization)

  • 추민기;정지홍;손동기;고한서
    • 한국가시화정보학회지
    • /
    • 제20권3호
    • /
    • pp.58-66
    • /
    • 2022
  • The high heat emitted from the process module and heat jacket may cause errors in semiconductor process equipment. Barriers were designed to reduce the temperature of surface on transfer module. A designed barrier was compared and analyzed by numerical analysis using ANSYS Fluent. The average temperature of barrier and effect of radiation heat transfer were also compared through absorbed radiative heat flux of the barrier. The adoption of the barrier had an effect on the radiative heat transfer reduction of the transfer module rod. The effect of the angles of barrier from 50° to 90° on the heat transfer was investigated using the absorbed radiative heat flux with the average temperature. The angle of barrier of 50° reduced the temperature up to 9.6 %.

Comparison of Heat Transfer in Both the Riser and Downcomer of a Circulating Fluidized Bed

  • Hassanein, Soubhi A.;Dahab, O.M.
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.24-32
    • /
    • 2004
  • The characteristics of heat transfer from horizontal cylinder immersed in both a riser and downcomer of a circulating fluidized beds were investigated experimentally under different values of solids mass flux, superficial air velocity, particle size diameter, and different bed materials. The test results indicated that local heat transfer coefficients in both riser and downcomer are strongly influenced by angular position, and mass flux, as well as by particle size and bed materials. The local heat transfer coefficients around a circumference of the cylinder inside a riser and downcomer of a CFB exhibited a general tendency to increase with decreasing particle size and increasing solids mass flux and vary with different bed materials. Also the averaged heat transfer coefficient calculated from local heat transfer coefficient exhibited the same trend as a local i.e increase with decrease particle size and increasing solids mass flux and vary with varying bed materials. The general trend for a riser local heat transfer coefficient is decrease with increase angle until ${\Phi}$ = 0.5-0.6 (Where at angle =180$^{\circ}$ ${\Phi}$ =1). Also the general trend for a local heat transfer coefficient in downcomer is to increase with increase the angle until ${\Phi}$= ${\theta}/{\Pi}$ = 0.3-0.5 (Where at angle =180$^{\circ}$ ${\Phi}$ =1). Comparison the results of the heat transfer in the riser and downcomer of a circulating fluidized beds shows that they have approximately the same trend but the values of heat transfer coefficients in riser is higher than in downcomer.

  • PDF

A Study on the Greenhouse Water Curtain System: Heat Transfer Characteristics

  • 손원명;한길영
    • 한국농공학회지
    • /
    • 제32권E호
    • /
    • pp.80-87
    • /
    • 1990
  • Energy balance equations Were developed to describe the heat transfer mechanisms in a double layer plastic greenhouse with a water curtain system. Heat transfer variables were determined by using various temperature data measured in a conventional prototype semicircular cross-section greenhouse over a range of water temperatures and water flow rates. The heat transfer coefficient between flowing water and greenhouse air was independent of water flow rates. But the heat transfer coefficient between water surface and the stagnant air space within the double plastic layer was dependent on water flow rates. Substituting the heat transfer coefficients, determined from the energy balance equations in the heat transfer equations, demonstrated various relationships among ambient air temperature, greenhouse air temperature, water temperature, and water flow rates. The heating benefits were linearly related to not only the inside and outside air temperatures but also to the water temperature. The energy conservation effects of the water curtain system were found even initial water temperatures were considerably lower than the greenhouse setting temperatures. Sensitivity analysis for heat transfer coefficients demonstrated that the heat transfer coefficient between greenhouse air and the stagnant air within the plastic layers was the most significant coefficient in the estimation of heating effects.

  • PDF

온간 단조 공정에서의 열전달 계수 (Heat transfer coefficients for F.E analysis in warm forging processes)

  • 강종훈;고병호;제진수;강성수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.138-143
    • /
    • 2005
  • Finite Element analysis is widely applied to elevated temperature forging processes and shows a lot of information of plastic deformation such as strain, stress, defects, damages and temperature distributions. In highly elevated temperature deformation processes, temperature of material and tool have significant influence on tool life, deformation conditions and productivities. To predict temperature related properties accurately, adequate coefficients of not only contact heat transfer between material and dies but also convection heat transfer due to coolants are required. In most F.E analysis, too higher value of contact heat transfer coefficient is usually applied to get acceptable temperature distribution of tool. For contact heat transfer coefficients between die and workpiece, accurate values were evaluated with different pressure and lubricants conditions. But convection heat transfer coefficients have not been investigated for forging lubricants. In this research, convection heat transfer coefficients for cooling by emulsion lubricants are suggested by experiment and Inverse method. To verify acquired convection and contact heat transfer coefficients, tool temperature was measured for the comparison between measured tool temperature and analysis results. To increase analysis accuracy, repeated analysis scheme was applied till temperature of the tool got to be in the steady-state conditions. Verification of heat transfer coefficients both contact and convection heat transfer coefficients was proven with good accordance between measurement and analysis.

  • PDF

평면충돌제트에 의한 고온 판 냉각과정의 열전달 해석 (Analysis of Heat Transfer in Cooling of a Hot Plate by Planar Impingement Jet)

  • 안대환;김동식
    • 대한기계학회논문집B
    • /
    • 제33권1호
    • /
    • pp.17-27
    • /
    • 2009
  • Water jet impingement cooling is used to remove heat from high-temperature surfaces such as hot steel plates in the steel manufacturing process (thermo-mechanical cooling process; TMCP). In those processes, uniform cooling is the most critical factor to ensure high strength steel and good quality. In this study, experiments are performed to measure the heat transfer coefficient together with the inverse heat conduction problem (IHCP) analysis for a plate cooled by planar water jet. In the inverse heat transfer analysis, spatial and temporal variations of heat transfer coefficient, with no information regarding its functional form, are determined by employing the conjugate gradient method with an adjoint problem. To estimate the two dimensional distribution of heat transfer coefficient and heat flux for planar waterjet cooling, eight thermo-couple are installed inside the plate. The results show that heat transfer coefficient is approximately uniform in the span-wise direction in the early stage of cooling. In the later stage where the forced-convection effect is important, the heat transfer coefficient becomes larger in the edge region. The surface temperature vs. heat flux characteristics are also investigated for the entire boiling regimes. In addition, the heat transfer rate for the two different plate geometries are compared at the same Reynolds number.

혼합냉매를 사용한 열펌프 시스템의 성능과 열전달 특성 (Performance and Heat Transfer Characteristics of Heat Pump System Using Refrigerant Mixtures)

  • 김동섭;신지영;노승탁
    • 설비공학논문집
    • /
    • 제4권4호
    • /
    • pp.360-369
    • /
    • 1992
  • A heat pump system is constructed to evaluate its performance and heat transfer characteristics with mixtures of R22/R142b as working fluids. The heat transfer in the evaporator and the overall performance are measured and analyzed in terms of the compositions and relevant variables. Possibility of capacity modulation by changing composition is observed without degradation of heat transfer coefficients and coefficient of performance. The cooling capacity is varied continuously within 200 percent based on minimum capacity at constant compressor speed. For similar cooling capacity, COP is improved by mixing two refrigerants and shows maximum value at 60% mass fraction of R22. Average heat transfer coefficients of mixtures decrease in comparison with pure refrigerants at similar cooling capacity and mass flow rate. However, the overall heat transfer coefficients decrease moderately. A cycle simulation is performed in order to manifest the advantages of using refrigerant mixtures, considering experimentally observed heat transfer characteristics.

  • PDF