• 제목/요약/키워드: hearts-on

검색결과 245건 처리시간 0.027초

DelNido 심정지액의 심근보호효과 (Evaluation of Cardioprotective Effects of DelNido Cardioplegia)

  • 우석정;장봉현;김규태
    • Journal of Chest Surgery
    • /
    • 제33권8호
    • /
    • pp.613-622
    • /
    • 2000
  • Background: The aim of this study is to define the cardioprotective effects(functional and metabolic) of newly developed DelNido cardioplegic solution(containing plasma solution, mannitol, magnesium and lidocaine). Material and Method: This study assessed the function of rat hearts after itermittent infusion of DelNido cardioplegia with different preserving methods(Air or Icebox) for 2hours and perfusing the hearts on a Langendorff apparatus. Heart rate, left ventricular developed pressure(LVDP) and coronary flow, were measured at pre-ischemic, post-reperfusion 15min, 30min and 45min. Coronary flow was standardized to dry heart weight. Each weight was weighted to calculate water content. Creatine kinase-MB isoenzyme release was measured and ultrastructural assessment was done with electron microscopes. Result: DelNido group was better than St, Thomas group and Icebox group was better than Room-air group. Conclusion: DelNido cardioplegia have better myocardial protective effects than St. Thomas cardioplegia when they were preserved in the Room-air. But we can not tell the difference between Delnido cardiplegia with Air preserving method and St. Thomas cardioplegia with Icebox.

  • PDF

NO 억제제가 허혈전처치의 심장 보호효과에 미치는 영향 (Effect of Inhibitor of Nitric Oxide Synthesis on the Ischemic Reconditioning in Isolated Heart of Rat.)

  • 유호진;조은용
    • Journal of Chest Surgery
    • /
    • 제29권8호
    • /
    • pp.807-815
    • /
    • 1996
  • 허혈전처치(ischemic preconditioniiIE)의 허혈심장 보호효과와 그 기전을 규명하기 위한 일환으로 citric oxide(HO)가 허혈전처치의 심보호 효과에 미치는 영향을 검토하였다. 흰쥐 적출심장의 Langendorrr관류표본에서 실험적인 허할(30분)-재관류(30분) 손상을 유도하였고, 허혈전처치는 재관류손상 유도 전에 5분 허혈 - 5분 재관류를 3회 반복하여 시행하였다. 허혈심근 손상의 지표로 심수축기능 세질효소 유출 및 미세형태학적 변화를, 그리고 HO 합성 억제제인 L-HAME 를 투여하여 허혈전처치와 비전처치 허혈-재관류 심장들에서 손상의 정도를 비교하였다. 그 결과 허혈- 재관류 심장에서 심기능의 저하및 세포질 유출이 현저하게 증가하였고 전자현미경상의 미세구조에서도 세포내 소기관 및 myofibril의 파괴가 관찰되 어 심근손상이 심함을 알 수 있었다. 허 혈-재관류에 의한 심 장손상은 허혈전처치를 시행한 허혈-재관류 심장에서는 현격하게 감소돼 심회복률이 77%로 증가하였 고 세포질유출도 현저하게 감소되었으며 미세소견에서도 세포구조가 비교적 잘 보존되었다. 허혈전처 치에 의한 심보호 효과에 NO가 관여하는지를 관찰하기 위하여 NO합성 억제제인 L-NAME를 투여하 여 허혈전처치를 시행하였다. 결과 L-UAME투여로 허혈전처치에 의하여 회복된 심기능 및 LDH유출 감소에 아무런 영향을 주지 않았고 허혈전처치에 의하여 비교적 잘 보존된 미세구조 역시 영향을 받지 않았다. 이상의 결과들로부터 허혈전처치는 세포수준에서 허혈심근의 재관류손상을 방지하며, NO합성의 증가가 횐쥐 적출 심장에서 허혈전처치에 의한 허혈심장 보호효과에 크게 기여하지 않을 것으로 사료되었다.

  • PDF

Effect of Amrinone, a Selective Inhibitor of Phosphodiesterase III, on PMNs-induced Cardiac Dysfunction in Ischemia/reperfusion

  • Oh, Byung-Kwon;Kim, Hyoung-Ki;Choi, Soo-Ran;Song, Jin-Ho;Park, Eon-Sub;Choi, Byung-Sun;Park, Jung-Duck;Shin, Yong-Kyoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권1호
    • /
    • pp.43-50
    • /
    • 2004
  • Ischemia followed by reperfusion in the presence of polymorphonuclear leukocytes (PMNs) results in a marked cardiac contractile dysfunction. Amrinone, a specific inhibitor of phosphodiesterase 3, has an antioxidant activity against PMNs. Therefore, we hypothesized that amrinone could attenuate PMNs-Induced cardiac dysfunction by suppression of reactive oxygen species (ROS) produced fby PMNs. In the present study, we examined the effects of amrinone on isolated ischemic (20 min) and reperfused (45 min) rat hearts perfused with PMNs. Amrinone at $25\;{\mu}M$, given to hearts during the first 5 min of reperfusion, significantly improved coronary flow, left ventricular developed pressure (P<0.001), and the maximal rate of development of left ventricular developed pressure (P<0.001), compared with ischemic/reperfused hearts perfused with PMNs in the absence of amrinone. In addition, amrinone significantly reduced myeloperoxidase activity by 50.8%, indicating decreased PMNs infiltration (p< 0.001). Superoxide radical and hydrogen peroxide production were also significantly reduced in fMLP- and PMA-stimulated PMNs pretreated with amrinone. Hydroxyl radical was scavenged by amrinone. fMLP-induced elevation of $[Ca^{2+}]_i$ was also inhibited by amrinone. These results provide evidence that amrinone can significantly attenuate PMN-induced cardiac contractile dysfunction in the ischemic/reperfused rat heart via attenuation of PMNs infiltration into the myocardium and suppression of ROS release by PMNs.

심장보조를 위한 흉부대동맥 근성형술 개발(예비 동물실험) (Development of Descending Thoracic Aortomyoplasty for Cardiac Bioassist)

  • 오중환;박승일;김은기;김영호;류기홍;이상헌;원주호;서재정
    • Journal of Chest Surgery
    • /
    • 제33권6호
    • /
    • pp.469-475
    • /
    • 2000
  • Background: Thoracic aortomyoplasty is one of the surgical treatment for heart failure and has advantages over artificial heart or intraaortic balloon pumps. It uses autogenous skeletal muscles and solves problems such as energy source. However its use in clinical settings has been limited. This preliminary study was designed to develop surgical technique and to determine the effect of acute descending thoracic aortomyoplsty. Material and Method: Thirteen adult Mongrel dogs were used. The left latissimus dorsi muscle was wrapped around the descending aorta under general anesthesis. Swan-Ganz and microtipped Millar catheter were used for the hemodynamics and endocaridial viability ratio. Data were collected with myostimulator on and off in normal hearts and the ischemic hearts. Result: In normal hearts, the mean aortic diastolic pressure increased from 72$\pm$15mmHg at baseline to 78$\pm$13mmHg with stimulator on. Coronary perfusion pressure increased from 61$\pm$11mmHg to 65$\pm$9mmHg. Diastolic time increased from 0.288$\pm$0.003 msec to 0.290$\pm$0.003msec. Systolic time decreased from 0.164$\pm$0.002msec to 0.160$\pm$0.002 msec. Endocardial viability ratio increased from 1.21$\pm$0.22 to 1.40$\pm$0.18. In ischemic hearts, mean aortic diastolic pressure incrased from 56$\pm$21mmHg at baseline to 61$\pm$15mmHg with stimulator on. Coronary perfusion pressure increased from 48$\pm$17mmHg to 52$\pm$15mmHg. Diastolic time increased from 0.290$\pm$0.003 msec to 0.313$\pm$0.004msec. Systolic time decreased from 0.180$\pm$0.002 msec to 0.177$\pm$0.003 msec. Endovascular viability ratio increased from 0.9$\pm$0.31 to 1.1$\pm$0.31. The limited number of cases ruled out the statistic significance. Conclusion: Descending thoracic aortomyoplasty is a simple operation designed to use patient's own skeletal muscles. It trends to increase diastolic augmentation and coronary perfusion pressure. Modification of surgical technique and stimulator protocol would maximize the effect to assist the heart.

  • PDF

Effect of Ischemic Preconditioning on the Oxygen Free Radical Production in the Post-ischemic Reperfused Heart

  • 박종완;김영훈;엄창섭;배재문;박찬웅;김명석
    • 대한약리학회지
    • /
    • 제30권3호
    • /
    • pp.321-330
    • /
    • 1994
  • 허혈전처치(ischemic preconditioning)의 재관류심근손상 보호작용과 그 기전을 규명하기 위한 연구의 일환으로 허혈전처치가 심근세포의 산소라디칼 생성능력에 미치는 영향을 검토하였다. 흰쥐 적출심장의 Langendorff 관류표본에서 실험적인 허혈(30분)-재관류(20분)손상을 유도하였고, 허혈전처치는 재관류손상 유도전에 5분 허혈-5분 재관류를 3회 반복하여 시행하였다. 허혈심근 재관류손상의 지표로 심수축기능, 세포질효소 유출, 칼슘 유입 및 미세형태학적 변화를, 그리고 심근세포의 산소라디칼 생성기전으로 xanthine oxidase system의 변동을 허혈전처치와 비전처치 재관류 심장들에서 비교검토하였다. 연구 성적은 다음과 같다. 1. 허혈전처치는 허혈-재관류 심장의 관상혈류량, 심박수, 좌심실압 등 심기능의 저하를 현저히 회복시켰다(회복률; 91%) 2. 허혈-재관류 심장에서 lactate dehydrogenase 유출증가는 허혈전처치에 의해 현저히 저하되었다. 3. 허혈-재관류 심근세포의 전자현미경상 미세구조는 허혈전처치시 비교적 잘 보존되었으며, 특히 myofibril 구조의 보존이 매우 뚜렷하였다. 4. 허혈-재관류시 산화성 조직손상 척도의 하나인 malondialdehyde 생성이 허혈전처치에 의하여 현저히 감소되었다. 5. 허혈전처치 심장에서 xanthine oxidase(D,O 및 D/O형)활성은 변화되지 않았으나 그 기질인 hypoxanthine의 조직함량은 현저히 감소되었다. 이상의 결과들로 부터 허혈전처치는 세포수준에서 허혈심근의 재관류손상을 방지하며, 허혈전처치에 따른 산소라디칼 생성 감소가 재관류손상 방지에 일부 기여할 수 있으리라 사료된다.an을 2주간 처치한 경우에도 영향을 받지 않았다. 이상의 결과로 미루어 아마도 losartan의 내피세포에 대한 작용은 constitutive NO 생성을 증가시키나 inducible NO 생성에는 영향을 미치지 않을 것으로 여겨진다.cium ion이 상당히 중요한 역할을 하는데, 특히 소뇌에서의 NO생성의 감소는 이들 약물들의 치명적 부작용인 tardive dyskinesia와 매우 깊은 관련을 추측할 수 있다. 그러나, 더 많은 약물들의 검색으로 일관적인 기본 결과가 필요 되고 또 각개 약물의 특정적 기전이 연구되기 위하여 현재 실험중이다.(신칭(新稱), Cystostereum subabruptum), 털융단버섯(신칭(新稱), Tomentella pilosa), 노란소나무무늬버섯(신칭(新稱), Asterostroma laxum), 붉은소나무비늘버섯(신칭(新稱), Hymenochaete cruenta), 가루소나무비늘버섯(신칭(新稱), Hymenochaete fuliginosa), 소나무비늘버섯(신칭(新稱), Hymenochaete tabacina), 갈색시루삔버섯(신칭(新稱), Inonotus radiatus), 벚나무진흙버섯(신칭(新稱), Phellinus pomaceus), 회주름구멍버섯(신칭(新稱), Antrodia crassa), 층주름구멍버섯(신칭(新稱), Antrodia serialis), 흰그물구멍버섯(신칭(新稱), Ceriporia reticulata), 겹친손등버섯(신칭(新稱), Oligoporus balsameus), 점박이손등버섯(신칭(新稱), Oligoporus guttulatus), 무른흰살버섯(신칭(新稱), Oxyporus cuneatus), 각목버섯(신칭(新稱),

  • PDF

적출된 토끼와 자라심장에서의 $Ca^{++}$ Pool ($Ca^{++}$ Polls in Isolated Rabbit and Turtle Heart)

  • 김인교;이중우;강두희
    • The Korean Journal of Physiology
    • /
    • 제9권1호
    • /
    • pp.13-22
    • /
    • 1975
  • From the study of movements of $Ca^{++}$ in frog cardiac muscle, Niedergerke (1963) postulated that $Ca^{++}$ necessary for the cardiac contraction is stored in a specific pool. Langer et al (1967) and DeCaro (1967) also found a close relationship between the change of $Ca^{++}$ flux kinetics and the change of contractile force. According to the studies of several investigators, Ca II (Bailey and Dressel 1968) or phase I and II (Langer 1965, Langer et al 1967, 1971) in the $Ca^{++}$ washout curve was associated with cardiac contractility. This investigation was aimed to elucidate the anatomical region of the contractile active $Ca^{++}$ pool. At the same time, it was assumed in this study that $Ca^{++}$ in the sarcoplasmic reticulumn represents one of the major intracellular $Ca^{++}$ pool and cardiac contractility was also dependent on the intracellular $Ca^{++}$ concentration. Consequently, this experiment was performed at different temperatures to activate to activate inhibit the deactivating process of activated $Ca^{++}$ in the intracellular space to see if changes in the contractility decay curve existed at different temperatures. The isolated hearts of rabbits and turtles (Amyda maackii) were attached to the perfusion apparatus according to the method employed by Bailey and Dressel (1968). The isolated hearts were initally perfused with a full Ringer solution containing 2 mg/ml of inulin for 1 hr, and then $Ca^{++}$ and inulin-free Ringer solution was perfused while the isometric tension was recorded and a serial sample of perfusion fluid dripping from the cardiac apex was collected for 10 sec throughout experimental period. The above procedure was performed at $23^{\circ}C$, $30^{\circ}C$ and $38^{\circ}C$ on the rabbit heart and $10{\sim}13^{\circ}C$, $10^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$ and $35^{\circ}C$ on the turtle heart. After determination of $Ca^{++}$ and inulin concentration of the samples, the $Ca^{++}$, inulin washout curve and the contractile tensin decay curve were analysed according to the method of Riggs (1963). The results were summarized as follows; 1. In the rabbit heart, there are 2 inulin compartments, 3 $Ca^{++}$ compartments and sing1e exponential decay of contractile tension. In the turtle heart, there are $1{\sim}2$ inulin compartments, $1{\sim}2$ $Ca^{++}$ compartments and $1{\sim}2$ phases of contractile tension decay. The fact that the inulin space was divided into 3 compartments in the washout curve in these hearts indicates the presence of heterogeneity in cardiac perfusion, i.e., overfused and underperfused area. 2. Ca I a9d Ca II in these hearts were found to have $Ca^{++}$ in the ECF compartments because their half times in the washout curves were far smaller than those of the inulin washout curves in the rabbit heart and similar to those of the inulin washout curves in the turtle heart. Ca III in the rabbit heart may have originated from the intracellular $Ca^{++}$ store. But no Ca III in the turtle heart was found. This may be due to the fact that the iutracellular $Ca^{++}$ pool in the turtle heart was too small to detect using this experimental procedure since sarcoplasmic reticulumn in the turtle heart is poorly developed. 3. In the rabbit heart, there were no chages in the half time of Ca I, Ca II, inulin I and inulin II at different temperatures, but the half time of Ca III was significantly prolonged at lower temperatures, and the half time of the contractile tension decay tended to be prolonged at lower temperatures but this was not significant. In the turtle heart, there were no changes in the half time of Ca I, Ca II, inulin 1, inulin II and phase I of the contractile tension decay at different temperatures, but the half time of phase II of the contractile tension decay was significantly prolonged at lower temperatures. This finding indicates that intracellu!ar $Ca^{++}$ in these hearts was also responsible particulary for maintaining the cardiac contractility at the lower temperatures. 4. The half times of contractile tension decay were shorter than those of Ca II in the $Ca^{++}$ washout curves in both animal hearts. According to the above results it was shown that $Ca^{++}$ in ECF is primarily and $Ca^{++}$ in the intracellular space is partially associated with the cardic contractility.

  • PDF

스트레스성 자극에 의한 항산화효소 유도와 허혈/재관류 심장 보호효과 (Effects of in vivo-stresses on the Activities of the Myocardial Antioxidant Enzymes and the Ischemia-Reperfusion Injury in Rat Hearts)

  • 박종완;김영훈;김명석
    • Toxicological Research
    • /
    • 제11권1호
    • /
    • pp.161-168
    • /
    • 1995
  • It has been found that various stress challenges induce the myocardial antioxidant enzymes and produce an acquisition of the cellular resistance to the ischemic injury in animal hearts. Most of the stresses, however, seem to be guite dangerous to an animal's life. In the present study, therefore, we tried to search for safely applicable stress modalities which could lead to the induction of antioxidant enzymes and the production of myocardial tolerance to the ischemia-reperfusion injury. Male Sprague-Dawley rats (200-250 g) were exposed to various non-fatal stress conditions, i.e., hyperthermia (environmental temperature of $42^{\circ}C$ for 30 min, non-anesthetized animal), iramobilization (60 min), treadmill exercise (20 m/min, 30min), swimming (30 min), and hyperbaric oxyflenation (3 atm, 60 min), once a day for 5 days. The activities of myocardial antioxidant enzymes and the ischemia-reperfusion injury of isolated hearts were evaluated at 24 hr after the last application of the stresses. The activities of antioxidant enzymes, superoxide dismutase (SOD), catalase, glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase (G6PD), were assayed in the freshly excised ventricular tissues. The ischemia-reperfusion injury was produced by 20 min-global ischemia followed by 30 min-reperfusion using a Langendorff perfusion system. In swimming and hyperbaric oxygenation groups, the activities of SOD and G6PD increased significantly and in the hyperthermia group, the catalase activity was elevated by 63% compared to the control. The percentile recoveries of cardiac function at 30 min of the post-ischemic reperfusion were 55.4%, 73.4%, and 74.2% in swimming, the hyperbaric oxygenation and the hyperthermia groups, respectively. The values were significantly higher than that of the control (38.6%). In additions, left ventricular end-diastolic pressure and lactate dehydrogenase release were significantly reduced in the stress groups. The results suggest that the antioxidant enzymes in the heart could be induced by the apparently safe in vivo-stresses and this may be involved in the myocardial protection from the ischemia-reperfusion injury.

  • PDF

타우로우루소데옥시콜린산이 흰쥐의 적출심장에서 허혈 및 재관류 손상에 미치는 영향 (Effect of Tauroursodeoxycholic Acid on Ischemia/Reperfusion Injury in Isolated Rat Heart)

  • 한석희;이우용;박진혁;이선미
    • Biomolecules & Therapeutics
    • /
    • 제7권4호
    • /
    • pp.354-361
    • /
    • 1999
  • In this study, the effects of tauroursodeoxycholic acid (TUDCA) on ischemia/ reperfusion injury were investigated on isolated heart perfusion models. Hezrts were perfused with oxygenated Krebs-henseleit solution (pH 7.4, $37^{\cire}C$) on a Langendorff apparatus. After equilibration, isolated hearts were treated with TUDCA 100 and 200 $\mu\textrm{M}$ or vehicle (0.02% DMSO) for 10 min before the onset of ischemia in single treatment group. In 7 day pretreatment group. TUDCA 50, 100 and 200 mg/kg body weight were given orally for 7 days before operation. After global ischemia (30 min), ischemic hearts were reperfused for 30 min. The physiological (i.e. heart rate, left ventricdular developed pressure, coronary flow, double product, time to contracture formation) and biochemical (lactate dehydrogenase; LDH) parameters were evaluated. In vehicle-treated group, time to contracture formation was 810 sec during ischemia, LVDP was 34.0 mmHg at the endpoint of reperfusion and LDH activity in total reperfusion effluent was 34.3 U/L. Single treatment with TUDCA did not change the postischemic recovery of cardiac function, LDH and time to contractur compared with ischemic control group. TUDCA pretreatment showed the tendency to decrease LDH release and to increase time to contracture and coronary flow. Our findings suggest that TUDCA does not ameliorate ischemia/reperfusion-reduced myocardial damage.

  • PDF

Ginkgolide B의 Guinea Pig 적출 심장에 대한 허혈 유발후 Reperfusion시의 보호 작용에 관한 연구 (Protective Effects of Ginkgolide B on Reperfusion of the Isolated Perfused Guinea Pig Heart)

  • 권광일;이영신;이재흥
    • 한국임상약학회지
    • /
    • 제3권2호
    • /
    • pp.147-155
    • /
    • 1993
  • The cardiac effects of PAF antagonist Ginkgolide B(BN 52051) have been investigated on the isolated perfused guinea pig hearts maintained at the constant hydrostatic perfusion pressure of 80 cm water. PDE(Phosphodiesterase) inhibitor KR-30289 was used as a positive control to see the positive inotropic effects on the perfused hearts. In this expriments, Ginkgolide $B(10^{-5}-SM)$ showed negative inotropic effects by decreasing of LVP, LVDP, LV dp/dt, HR and RPP(Rate Pressure Product). Ginkgolide B also decreased the number of extrasystole by $51.9\%(from\;23.75\pm9.22/min\;to\;11.43\pm435/min)$ induced by global ischemia and reperfusion. The rate, [-dp/dt]/[+dp/dt] increased in preischemia but decreased in postischemia. 1n the separated study the injection of 1ml of Ginkgolide B$(10^{-4M})$ on the isolated heart, increased coronary flow(CF) by $11.8\%(from\;7.5\pm7.65ml/min\;to\;8.5\pm0.29ml/min)$ and decreased the number of extrasystole by $47.6\%(from\;21\pm5.92/min\;to\;11\pm5.27/min)$. In conclusion, Ginkgolide B showed antiarrhythmic and protective effects by decreasing the number of extrasystole and by increasing the coronary flow, respectively.

  • PDF