• 제목/요약/키워드: health toxicity

검색결과 1,222건 처리시간 0.022초

Application of a Microbial Toxicity Assay for Monitoring Treatment Efficiency of Pentachlorophenol in Water using UV Photolysis and $TiO_2$ Photocatalysis

  • Kim, Jung-Kon;Cho, Il-Hyung;Zoh, Kyung-Duk;Choi, Kyung-Ho
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2004년도 International Conference Global Environmental Problems and their Health Consequences
    • /
    • pp.146-150
    • /
    • 2004
  • Degradation efficiency of pentachlorophenol (PCP) by using direct UV photolysis and $TiO_2$ photocatalysis was evaluated with both chemical analyses and acute toxicity assessment employing luminescent bacteria Vibrio fischeri. PCP was chosen as a target compound in this study because of its wide application as fungicide, bactericide, insecticide and wood preservative in agriculture and many industries, in addition to its well-known environmental consequences. The acute toxicity to the microbe was reduced by >60% when applying UV alone, and was completely removed when treated with $UV-TiO_2$ combinations. Toxicity reduction pattern determined with the Microtox Assay generally corresponds with the chemistry data: However, it should be noted that toxicity was greater than expected by the chemistry data. Formation of TCBQ, a toxic byprodut, could not explain observed microbial toxicity. These observations are probably due to the presence of unidentified toxic PCP byproducts, which may include polychlorinated dibenzodioxins and polychlorinated dibenzofurans. When Microtox results were compared between different exposure time, i.e.,5 min and 15 min, an interesting pattern was noted with $UVA-\;TiO_2$ treatment. While no microbial toxicity was observed with 5 min exposure, an EC50 value of 45.4% was estimated with 15 min exposure, which was not observed in $UVB-\;TiO_2$ exposure. This result may suggest the presence of unidentified toxic degradation products generated in the later stage of treatment. Based on this study, $TiO_2$ photocatalyst, together with UVB photolysis could improve the removal of both PCP and its toxic derivatives in more efficient way. The Microtox Assay is promising and economical method for monitoring efficiency of wastewater treatment processes.

  • PDF

국내 유통되는 농약 유효성분에 대한 안전보건정보 데이터베이스 구축 (A Study on Developing Safety and Health Information Database of Pesticide Ingredients Used in Korea)

  • 임경채;최상준
    • 대한안전경영과학회지
    • /
    • 제12권3호
    • /
    • pp.27-35
    • /
    • 2010
  • In this study, we have developed the database of safety and health information for pesticide active ingredients used in Korea. There were 1,283 pesticide items among which 296 were found to be out of use in current. A total of 349 pesticide ingredients were being used in Korea. The database consists of 32 types of information including chemical characteristics, acute toxicity, chronic toxicity (carcinogenic and reproductive toxicity), specific symptoms by exposure route and first aid. When pesticide ingredients were assessed in terms of key properties such as color, odor, acute toxicity, carcinogenic and reproductive toxicity, they were white, colorless and odorless, in general. When ingredients were classified by category of acute toxicity, 'Non-hazardous' represented 29%, followed by 'Slightly hazardous' at 16%, 'Moderately hazardous' at 14%, 'Highly hazardous' at 5%, and 'Extremely hazardous' at 2%. 85 out of 349, or 24% of ingredients were found to be possibly carcinogenic to human. This database is expected to provide an easy access for farmers, agriculture supervisors, researchers and consumers, and it can ultimately be used as basic data on farmer's safety and health.

메틸사이클로핵산 (methylcyclohexane)의 흡입독성과 유해성 평가 (A Study on the Hazardousness Evaluation and the Inhalation Toxicity of Methylcyclohexane)

  • 김현영;이성배;강민구;송시환
    • Environmental Analysis Health and Toxicology
    • /
    • 제21권2호
    • /
    • pp.173-184
    • /
    • 2006
  • From the harmfulness expectation test conducted through a toxicity anticipation program, methylcyclohexane turned out to be harmful and simulative, but no carcinogenicity was anticipated. In a four-hour acute inhalation toxicity test, the result showed that lethal concentration ($LC_{50}$) was 3,750 ppm (15,054 mg/L), which was identified as a harmful substance on the basis of the harmful substance classification standard $2 of the Industrial safety and health law. methylcyclohexane fell under the category $4(2,500 substance from the GHS standard acute toxicity harmfulness classification. Also, from subchronic inhalation toxicity test that included 6 hours a day, five days a week, and for 13 weeks, we could observe weight, activity, long term weight, blood and blood biochemical influence from the exposure of test substance. No-observed effect level (NOEL) was determined below $100{\sim}400ppm$ inboth male and female. This material falls under the Category 2 ($50{\sim}250ppm/6hours/90days$) in the GHS (Globally Harmonized System) standard trace long-term whole body toxicity repeated exposure, and can be classified as a harmful substance in accordance with the Industrial Safety and Health Law harmful substance standard $NOEL{\leq}0.5mg/L/6hr/90day$ (rat).

Studies on the Toxicity and Distribution of Indium Compounds According to Particle Size in Sprague-Dawley Rats

  • Lim, Cheol Hong;Han, Jeong-Hee;Cho, Hae-Won;Kang, Mingu
    • Toxicological Research
    • /
    • 제30권1호
    • /
    • pp.55-63
    • /
    • 2014
  • Objectives: The use of indium compounds, especially those of small size, for the production of semiconductors, liquid-crystal panels, etc., has increased recently. However, the role of particle size or the chemical composition of indium compounds in their toxicity and distribution in the body has not been sufficiently investigated. Therefore, the aim of this study was to examine the effects of particle size and the chemical composition of indium compounds on their toxicity and distribution. Methods: Male Sprague-Dawley rats were exposed to two different-sized indium oxides (average particle sizes under 4,000 nm [IO_4000] and 100 nm [IO_100]) and one nano-sized indium-tin oxide (ITO; average particle size less than 50 nm) by inhalation for 6 hr daily, 5 days per week, for 4 weeks at approximately $1mg/m^3$ of indium by mass concentration. Results: We observed differences in lung weights and histopathological findings, differential cell counts, and cell damage indicators in the bronchoalveolar lavage fluid between the normal control group and IO- or ITO-exposed groups. However, only ITO affected respiratory functions in exposed rats. Overall, the toxicity of ITO was much higher than that of IOs; the toxicity of IO_4000 was higher than that of IO_100. A 4-week recovery period was not sufficient to alleviate the toxic effects of IO and ITO exposure. Inhaled indium was mainly deposited in the lungs. ITO in the lungs was removed more slowly than IOs; IO_4000 was removed faster than IO_100. IOs were not distributed to other organs (i.e., the brain, liver, and spleen), whereas ITO was. Concentrations of indium in the blood and organ tissues were higher at 4 weeks after exposure. Conclusions: The effect of particle size on the toxicity of indium compounds was not clear, whereas chemical composition clearly affected toxicity; ITO showed much higher toxicity than that of IO.

Intravenous Single and Two Week Repeated Dose Toxicity Studies of Rice Cells-derived Recombinant Human Granulocyte-Macrophage Colony Stimulating Factor on Rats

  • Ji, Jung-Eun;Lee, Jung-Min;Choi, Jong-Min;Choi, Young-Hwa;Kim, Seok-Kyun;Ahn, Kyong-Hoon;Lee, Dong-Hoon;Kim, Ha-Hyung;Han, Kyu-Boem;Kim, Dae-Kyong
    • Toxicological Research
    • /
    • 제23권4호
    • /
    • pp.383-389
    • /
    • 2007
  • Recombinant human granulocyte-macrophage colony stimulating factor (hGM-CSF) regulates proliferation and differentiation of hematopoietic progenitor cells and modulates function of the mature hematopoietic cells. In the previous study, we reported that hGM-CSF could be produced in transgenic rice cell suspension culture, termed rhGM-CSF. In the present study we examined the single and repeated dose toxicity of rice cells-derived hGM-CSF in SD rats. During single dose toxicity study for 7 days, there were no any toxic effects at any dose of from 10 to $1000{\mu}g/kg$. The lethal dose ($LD_{50}$) was not found in this range. Moreover, repeated dose toxicity study of 14-days period and at the doses of 50 and $200{\mu}g/kg$ (i. v.) of rhGM-CSF did not show any changes in food and water intake. There were also no significant changes in both body and organ weights between the control and the test groups. The hematological and blood biochemical parameters were statistically not different in all the groups. These results suggest that rhGM-CSF has no toxicity in SD rats.

Toxicity of Methylcyclohexane and Its Effect on the Reproductive System in SD Rats

  • Kim, Hyeon-Yeong;Kang, Min-Gu;Kim, Tae-Gyun;Kang, Chung-Won
    • Safety and Health at Work
    • /
    • 제2권3호
    • /
    • pp.290-300
    • /
    • 2011
  • Objectives: There is limited data regarding the toxicity of methylcyclohexane, despite its wide use in rubber adhesives, paint diluents, and cleansing agents. This study aimed to verify the toxicity and influence on the reproductive system of methylcyclohexane after its repeated injection in Sprague Dawley (SD) rats. Methods: Methylcyclohexane was injected subcutaneously into male and female SD rats once a day, five times a week, for 13 weeks at different doses (0, 10, 100, and 1,000 mg/kg/day) for each group. The toxicity of testing material was verified by observing the change in body and organ weight, hematological change, pathological findings, and effect on the reproductive system at each different concentration. Results: In the 1,000 mg/kg/day group, there were cases of animal deaths. In animals that survived, hematological changes, including a decrease in the red blood cell count, were observed. A considerable weight gain or loss and pathological abnormalities in the liver, kidney, and other organs were found. However, the 10 and 100 mg/kg/day groups did not cause deaths or other specific abnormalities. In terms of reproductive toxicity, there were changes in hormone levels, including a significant decrease in hormones such as estradiol and progesterone (p < 0.001) in male animals. Menstrual cycle change for female animals did not show concentration dependency. Conclusion: When injected repeatedly for 13 weeks, methylcyclohexane proved to be toxic for the liver, heart, and kidney at a high dose. The absolute toxic dose was 1,000 mg/kg/day, while the no observed adverse effect level was less than 100 mg/kg/day. The substance exerted little influence on the reproductive system.

Methylmercury Toxicity Is Induced by Elevation of Intracellular $Ca^{2+}$ through Activation of Phosphatidylcholine-Specific Phospholipase C

  • Chin, Mi-Reyoung;Kang, Mi-Sun;Jeong, Ju-Yeon;Jung, Sung-Yun;Seo, Ji-Heui;Kim, Dae-Kyong
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2003년도 추계국제학술대회
    • /
    • pp.13-13
    • /
    • 2003
  • Methylmercury (MeHg) is a ubiquitous environmental toxicant that can be exposed to humans by ingestion of contaminated food including fish and bread. MeHg has been suggested to exert its toxicity through its high reactivity to thiols, generation of arachidonic acid and reactive oxygen species (ROS), and elevation of intracellular $Ca^{2+}$ levels ([$Ca^{2+}$$_{i}$). However, the precise mechanism has not been fully defined. Here we show that phosphatidylcholine-specific phospholipase C (PC-PLC) is a critical pathway for MeHg-induced toxicity. MeHg activated the acidic form of sphingomyelinase (A-SMase) and group IV cytosolic phospholipase $A_2$ ($cPLA_2$) downstream of PC-PLC, but these enzymes as well as protein kinase C were not linked to MeHg's toxicity. Furthermore, MeHg produced ROS, which did not cause the toxicity. However, D6O9, an inhibitor of PC-PLC, significantly reversed the toxicity in a time- and dose-dependent manner in MDCK and SH-5YSY cells. Addition of EGTA to culture media resulted in partial decrease of [$Ca^{2+}$$_{i}$ and partially blocked cell death. In contrast, D609 completely prevented cell death with parallel decreases in diacylglycerol and [$Ca^{2+}$$_{i}$. Together, our findings indicated that MeHg-induced toxicity was caused by elevation of [$Ca^{2+}$]$_{i}$ through activation of PC-PLC. The toxicity was not attributable to the signaling pathways such as $cPLA_2$, A-SMase, and PKC, or to the generation of ROS.

  • PDF

화학물질 독성 빅데이터와 심층학습 모델을 활용한 내분비계 장애물질 선별 방법-세정제품과 세탁제품을 중심으로 (A Screening Method to Identify Potential Endocrine Disruptors Using Chemical Toxicity Big Data and a Deep Learning Model with a Focus on Cleaning and Laundry Products)

  • 이인혜;이수진;지경희
    • 한국환경보건학회지
    • /
    • 제47권5호
    • /
    • pp.462-471
    • /
    • 2021
  • Background: The number of synthesized chemicals has rapidly increased over the past decade. For many chemicals, there is a lack of information on toxicity. With the current movement toward reducing animal testing, the use of toxicity big data and deep learning could be a promising tool to screen potential toxicants. Objectives: This study identified potential chemicals related to reproductive and estrogen receptor (ER)-mediated toxicities for 1135 cleaning products and 886 laundry products. Methods: We listed chemicals contained in cleaning and laundry products from a publicly available database. Then, chemicals that potentially exhibited reproductive and ER-mediated toxicities were identified using the European Union Classification, Labeling and Packaging classification and ToxCast database, respectively. For chemicals absent from the ToxCast database, ER activity was predicted using deep learning models. Results: Among the 783 listed chemicals, there were 53 with potential reproductive toxicity and 310 with potential ER-mediated toxicity. Among the 473 chemicals not tested with ToxCast assays, deep learning models indicated that 42 chemicals exhibited ER-mediated toxicity. A total of 13 chemicals were identified as causing reproductive toxicity by reacting with the ER. Conclusions: We demonstrated a screening method to identify potential chemicals related to reproductive and ER-mediated toxicities utilizing chemical toxicity big data and deep learning. Integrating toxicity data from in vivo, in vitro, and deep learning models may contribute to screening chemicals in consumer products.

화학물질 피부접촉에 의한 피부독성 유해성 분류에 관한 고찰 (A Review on the Classification of Skin Toxicity Hazards Due to Skin Contact with Chemical Substances)

  • 권부현;조지훈;이도희
    • 한국산업보건학회지
    • /
    • 제28권2호
    • /
    • pp.175-189
    • /
    • 2018
  • Objectives: In this study, we analyze statistics on industrial accidents caused by chemical skin contact and provide skin toxicity hazard information on the related domestic system and circulation volumes. Methods and Results: We analyzed occupational fatalities and skin diseases caused by chemical leaks and contact from 2007 to 2016(10 years) and surveyed data on occupational skin diseases using the 2014 work environment survey data. The NIOSH Skin Notation Profiles for 57 chemical substances, which are provided to prevent occupational skin diseases, were searched and hazard information on skin contact with chemical substances was classified. In order to identify skin toxicity information among domestically distributed and legally regulated substances and to investigate skin-toxic substances, MSDS basic data on 19,740 chemical substances provided on the homepage of Korea Occupational Safety & Health Agency were searched. Acute toxicity(dermal) category 1-4 substances totaled 1,020, and the number of chemical substances classified as category 1 and 2 substances were 135 and 137, respectively. In the chemical substances prescribed by the Ministry of Employment and Labor, 173 substances were classified into acute toxicity(dermal) categories 1-4, 58 of which correspond to category 1 or 2. Conclusions: Within the present range of industrial accidents, the proportion of skin diseases due to contact with chemicals is not high. However, there is always a risk of occupational skin diseases due to increasing chemicals and due to the use of new chemicals. It is hoped that this information will be used by workplace safety and health officials and health and safety experts to prevent acute toxity(dermal) due to chemical skin contact.

전자산업에서 사용하는 화학물질의 독성예측을 위한 QSAR 접근법 (QSAR Approach for Toxicity Prediction of Chemicals Used in Electronics Industries)

  • 김지영;최광민;김관식;김동일
    • 한국환경보건학회지
    • /
    • 제40권2호
    • /
    • pp.105-113
    • /
    • 2014
  • Objectives: It is necessary to apply quantitative structure activity relationship (QSAR) for the various chemicals with insufficient toxicity data that are used in the workplace, based on the precautionary principle. This study aims to find application plan of QSAR software tool for predicting health hazards such as genetic toxicity, and carcinogenicity for some chemicals used in the electronics industries. Methods: Toxicity prediction of 21 chemicals such as 5-aminotetrazole, ethyl lactate, digallium trioxide, etc. used in electronics industries was assessed by Toxicity Prediction by Komputer Assisted Technology (TOPKAT). In order to identify the suitability and reliability of carcinogenicity prediction, 25 chemicals such as 4-aminobiphenyl, ethylene oxide, etc. which are classified as Group 1 carcinogens by the International Agency for Research on Cancer (IARC) were selected. Results: Among 21 chemicals, we obtained prediction results for 5 carcinogens, 8 non-carcinogens and 8 unpredictability chemicals. On the other hand, the carcinogenic potential of 5 carcinogens was found to be low by relevant research testing data and Oncologic TM tool. Seven of the 25 carcinogens (IARC Group 1) were wrongly predicted as non-carcinogens (false negative rate: 36.8%). We confirmed that the prediction error could be improved by combining genetic toxicity information such as mutagenicity. Conclusions: Some compounds, including inorganic chemicals and polymers, were still limited for applying toxicity prediction program. Carcinogenicity prediction may be further improved by conducting cross-validation of various toxicity prediction programs, or application of the theoretical molecular descriptors.