• Title/Summary/Keyword: headway control

Search Result 60, Processing Time 0.035 seconds

The Study of Efficiency of Train Control System Using Communication

  • Baek, Jong-Hyen;Kim, Yong-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.107-109
    • /
    • 2004
  • Assuming that life of urban transit signaling is about 20 years with the flow of technology development, Seoul urban transit will be required to prepare for improvement soon. The highly developed countries preceding several levels rather than Korea are faced with commercial service, which uses RF, ATC and ATO in Train Control System. European highly developed countries in the field of railroad have been progressing standardization and technology development of signaling associated with related manufacturers for direct operation between nations. For that, a effective train control system with radio beyond control levels by the existing wayside-onboard communication is in a developed and used stage. The systems, which advanced countries have been progressing, seem to be applied to domestic within 5 years from now. At present, there are no countries using CBTC for service throughout the world. So, this is investigated to focus on the routes ready to be installed with completed CBTC and trying to introduce the technology. Especially, considerations for economic aspect are mainly reviewed about controlling ability of headway, flexibility, extension aspect and construction cost on the basis of paper examined in NYCT.

  • PDF

A Study on the Drive-less Operating Technology using Communication Based Train Control (무선통신기반 열차제어에 의한 무인운전기술에 대한 연구)

  • Jeong, Rag-Gyo;Kim, Baek-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.67-72
    • /
    • 2010
  • In this paper, we verify the driverless operation possibility of MBS, which could overcome the defects of conventional track-circuit-based FBS, such as additional needs of maintenance and others problems according to short-circuit sensibility and, and which could allow the minimal interval between trains. With MBS, we can expect the reduction of headway, then the increase of transportation demand, and the protection of unnecessary speed variation because it allows the real time detection of train position from central office, and direct transmission of data between preceding trains and the following ones. In addition, it is possible to reduce the number of wayside-equipment substantially, to improve the passenger service, and to the achieve the positive economic effects by comfortable ride.

Development of an Algorithm for Minimization of Passengers' Waiting Time Using Smart Card Data (교통카드 데이터를 이용한 버스 승객 대기시간 최소화 알고리즘 개발)

  • Jeon, Sangwoo;Lee, Jeongwoo;Jun, Chulmin
    • Spatial Information Research
    • /
    • v.22 no.5
    • /
    • pp.65-75
    • /
    • 2014
  • Bus headway plays an important role not only in determining the passenger waiting time and bus service quality, but also in influencing the bus operation cost and passenger demand. Previous research on headway control has considered only an hourly difference in the distribution of ridership between peak and non-peak hours. However, this approach is too simple to help manage ridership demand fluctuations in a short time scale; thus passengers' waiting cost will be generated when ridership demand exceeds the supply of bus services. Moreover, bus ridership demand varies by station location and traffic situation. To address this concern, we propose a headway control algorithm for minimizing the waiting time cost by using Smart Card data. We also provide proof of the convergence of the algorithm to the desired headway allocation using a set of preconditions of political waiting time guarantees and available fleet constraints. For model verification, the data from the No. 143 bus line in Seoul were used. The results show that the total savings in cost totaled approximately 600,000 won per day when we apply the time-value cost of waiting time. Thus, we can expect that cost savings will be more pronounced when the algorithm is applied to larger systems.

The Development of the Platform for the Simulations of the Vehicle Operational Control for PRT (소형궤도차량의 차량운행제어 모의시험을 위한 플랫폼 개발)

  • Lee, Jun-Ho;Jeong, Rac-Gyo
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1441-1444
    • /
    • 2009
  • In this paper a platform that makes it possible the simulations of the vehicle operational control for PRT (Personal Rapid Transit) is introduced. PRT system has very short headway and requires accurate speed control of the vehicles to avoid the impact between the vehicles. The proposed platform is composed of central control system, station control system, communication control system, AP for wireless communication, and monitoring system. Simple operational test scenarios are presented and the effectiveness of the proposed platform is shown using the test scenarios.

  • PDF

A Study on the Efficiency of Energy Storage System Applied to the Power Traction System of DC Electric Railway (직류전기철도에서 운행시격에 따른 에너지저장장치의 효율에 관한 연구)

  • Kim, Sung-Dae;Choi, Kyu-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.754-760
    • /
    • 2011
  • In the DC traction system, a large load current of electric railcar leads to a voltage drop when a vehicle starts, and the regenerative power generated by brake system increases the catenary voltage. To minimize the voltage fluctuation during the train operation and make use of the regenerative power, several types of energy storage systems are being studied. The energy storage system that is being recently introduced consists of the supercapacitors for energy storage and the bi-direction DC/DC converter for charge/discharge control. The efficiency of the energy storage system depends on the train operation pattern. In this paper, the operation efficiency of the energy storage system was quantitatively analyzed via simulation study taking consideration of the train operation patterns. The simulation was conducted changing the headway of trains with the energy storage system that uses the bi-direction DC/DC converter and supercapacitor. The simulation results showed that the operation efficiency of the energy storage system increases as the headway increase.

  • PDF

A Study on the Headway for PRT System (소형궤도차량 운전시격에 관한 고찰(1))

  • Kim Jong-Ki;Kim Baek-Hyun;Lee Jun-Ho;Lee Duck-Ho;Shin Key-Soe
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.831-835
    • /
    • 2005
  • In a signal control of the railway system, the first objective is to guarantee a safety of the train operation, and the second is to increase a frequency(a capability of the transportation) of the train operation. In order to express the capability of the transportation a terminology what is called a railroad line capacity is employed. The railroad line capacity means a maximum frequency of the train operation in a possible schedule of the one way operation for one day. During the last several years an improvement in the facilities of the train operation (railroad line extension, improvement in the stations, improvement in the signal facilities) has been achieved to increase the railroad line capacity. In this paper the authors deal with the case analysis which try to shorten headway and which has an impartible relation with increasing of the railroad capacity

  • PDF

Study on the Speed Control Code Design for Fixed Block TCS (고정폐색 열차제어시스템 속도제어코드 설계에 관한 연구)

  • Lee, Kang-Mi;Shin, Kyung-Ho;Shin, Duc-Ko;Lee, Jae-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.1
    • /
    • pp.37-41
    • /
    • 2012
  • Kyung-Bu High Speed Railway is operated in train control system(tcs) of fixed block operated in a way of dividing track circuits into several blocks in accordance with operation circumstances such as rolling stocks, grade, curves and facilities. The TCS of fixed block system refers to a continuous train control system, which transfers operational information such as entry and exit speed, distance-to-go, and deceleration etc. into on-board train control equipment on the basis of block occupancy of a preceding train. It guarantees a safe operation of trains by giving an emergency braking order, in case that a train exceeds an entry and exit speed of a corresponding block. In this paper, we analyze the speed control code deducing in accordance with maximum operation speed and characteristics of rolling stocks by analyzing principles of generation of speed control code allocated in blocks for safe operation, then train operational efficiency was analyzed by means of analysis of operation headway in accordance with the deduced speed control code. This study will be used to design in case of getting an increase in speed for existing high speed line or new high speed line TCS.

A study of the train traffic optimal control system in a circular metro line (도시형 순환 열차에서 운전 최적제어 시스템에 관한 연구)

  • Hong, Hyo-Sik;Ryu, Kwang-Gyun;Song, Noon-Suck
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.236-246
    • /
    • 2003
  • This paper is implemented a control algorithm in order to be stable and minimized to entire train traffic system at delayed case. Signal ing system is described wi th algebraic equations given for train headway, Discrete-event simulation principles are reviewed and a demonstration block signaling model using the technique is implemented. Train congestion at station entrance for short headway operation is demonstrated and the propagation of delays along a platform of trains from any imposed delay to the leading train is also shown. A rail way signaling system is by nature a distributed operation with event triggered at discrete intervals. Although the train kinematic variables of position, velocity, and acceleration are continually changing, the changes are triggered when the trains pass over section boundaries and arrive at signals and route switches. This paper deals with linear-mode1ing, stability and optimal control for the traffic on such metro line of the model is reconstructed in order to adapt the circuits. This paper propose optimal control laws wi th state feedback ensuring the stability of the modeled system for circuits. Simulation results show the benefit to be expected from an efficient traffic control. The main results are summarized as follows: 1. In this paper we develop a linear model describing the traffic for both loop lines, two state space equations have been analyzed. The first one is adapted to the situation where a complete nominal time schedule is available while second one is adapted when only the nominal time interval between trains is known, in both cases we show the unstability of the traffic when the proceeding train is delayed following properties, - They are easily implemented at law cost on existing lines. - They ensure the exponetial stability of loop system. 2. These control laws have been tested on a traffic simulation software taking into the non-linearites and the physical constraints on a metro line. By means of simulation, the efficiency of the proposed optimal control laws are shown.

  • PDF

A Study on the Construction of the Communication Based Control System for PRT Vehicles (통신기반 PRT 차량제어시스템의 구축에 관한 연구)

  • Lee, Jun-Ho;Kim, Yong-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.347-351
    • /
    • 2008
  • This study is concerned with the design of the communication based evaluation simulator for the development of the operational control algorithm for PRT(Personal Rapid Transit) system which has very short headway and requires accurate speed control of the vehicles to avoid the impact between the vehicles. The evaluation simulator is composed of central control system, vehicle control system, communication control system, AP for wireless communication, and monitoring system. For the mobile characteristics of the PRT vehicles wireless communication is employed for the transmission of the control and status information between the central control system and the vehicle control system. By using simple test operational control algorithm the effectiveness of the proposed evaluation simulator is shown.

  • PDF

Capacity of Urban Freeway Work Zones (도시 고속도로 공사구간 용량 산정)

  • Lee, Mi Ri;Kim, Do-Gyeong;Kim, Hyo-Seung;Lee, Chungwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1123-1130
    • /
    • 2013
  • This paper aims to estimate work zone base capacity by the number of lanes for urban freeway. To do this, data were collected from the field survey and the database system maintained by traffic control center, and analyzed with four different methods such as the average maximum observation flow rate, headway, regression analysis, and parameter inspection. The work zone base capacity for urban freeway is estimated based on the average maximum observation flow rate and headway method, which are more reliable methods compared to others. The average capacity is 1,650pcphpl when the design speed is 80km/h. The capacity of four lanes one-way work zones was about 1,700pcphpl, while one of 2 lanes one-way work zones was about 1,600pcphpl. The capacity reduction rates for each are 0.15 and 0.2, respectively. The smaller the number of lane is, the more base capacity is reduced. For verification of results, we estimate the capacity by simulation analysis using PARAMICS, and compare with analytical results by a statistical method. This research can be used for efficient and systemic management of work zone in the urban freeway.