• Title/Summary/Keyword: headspace oxygen

Search Result 29, Processing Time 0.022 seconds

Linear Correlation between Online Capacitance and Offline Biomass Measurement up to High Cell Densities in Escherichia coli Fermentations in a Pilot-Scale Pressurized Bioreactor

  • Knabben, Ingo;Regestein, Lars;Schauf, Julia;Steinbusch, Sven;Buchs, Jochen
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.204-211
    • /
    • 2011
  • To yield high concentrations of protein expressed by genetically modified Escherichia coli, it is important that the bacterial strains are cultivated to high cell density in industrial bioprocesses. Since the expressed target protein is mostly accumulated inside the E. coli cells, the cellular product formation can be directly correlated to the bacterial biomass concentration. The typical way to determine this concentration is to sample offline. Such manual sampling, however, wastes time and is not efficient for acquiring direct feedback to control a fedbatch fermentation. An E. coli K12-derived strain was cultivated to high cell density in a pressurized stirred bioreactor on a pilot scale, by detecting biomass concentration online using a capacitance probe. This E. coli strain was grown in pure minimal medium using two carbon sources (glucose and glycerol). By applying exponential feeding profiles corresponding to a constant specific growth rate, the E. coli culture grew under carbon-limited conditions to minimize overflow metabolites. A high linearity was found between capacitance and biomass concentration, whereby up to 85 g/L dry cell weight was measured. To validate the viability of the culture, the oxygen transfer rate (OTR) was determined online, yielding maximum values of 0.69 mol/l/h and 0.98mol/l/h by using glucose and glycerol as carbon sources, respectively. Consequently, online monitoring of biomass using a capacitance probe provides direct and fast information about the viable E. coli biomass generated under aerobic fermentation conditions at elevated headspace pressures.

Factors Affecting the Photooxidative Stability of Soymilk (두유의 광산화 안정성에 영향을 주는 요인)

  • 이상화
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.3
    • /
    • pp.441-452
    • /
    • 1996
  • The effects of chlorophyll, tocopherols($\alpha$-tocopherol, ${\gamma}$-tocopherol and $\delta$-tocopherol), carotenoids ($\beta$-carotene and lutein), light sources, light intensities and strage temperatures on the photooxidative stability of soymilk were studied by measuring TBA value and depleted headspace oxygen(DHO) of soymilk. The samples were stored in the light storage box for 6 days and evaluated for the photooxidative stabilities. As the concentrations of chlorophyll increased, TBA value and DHO of the sample increased significantly(p<0.05), indicating chlorophyll acting as a photosensitizer. However, as the concentrations of tocopherols ($\alpha$-tocopherol, ${\gamma}$-tocopherol and $\delta$-tocopherol) and carotenoids ($\beta$-carotene and lutein) increased, TBA values and DHO of the samples decreased significantly(p<0.05). The light screening effects of carotenoids on DHO in the samples were not significantly different from the control at p>0.05. Therefore, there was no light screening effects of carotenoids on the oxidative stability of soymilk. The results indicate that tocopherols and carotenoids reduce the photooxidative stability of soymilk. $\delta$-Tocopherol was the most effective in photosensitized oxidation followed by ${\gamma}$-and $\alpha$-tocopherols in the order of increasing stability. $\beta$-Carotene was significantly(p<0.05) more effective than lutein in minimizing the chlorophyll-sensitized photooxidation of soymilk. Visible light was more effective than UV light in decreasing the photooxidative stability of soymilk. Therefore, photooxidation of soymilk containing chlorophyll is mainly due to photosensitized oxidation rather than photolysis reaction. As the intensities of fluorescence light increased, TBA values and DHO of the samples increased significantly at P<0.05. However, as the storage temperatures increased, TBA values and DHO of soymilk did not change significantly at p>0.05.

  • PDF

Effects of Chlorophyll Addition and Light on the Oxidative Stability and Antioxidant Changes of Perilla Oil Emulsion (들기름 에멀젼의 산화안정성 및 산화방지제에 대한 클로로필 첨가 및 빛의 영향)

  • Choe, Jeesu;Choe, Eunok
    • Korean journal of food and cookery science
    • /
    • v.29 no.1
    • /
    • pp.53-62
    • /
    • 2013
  • Lipid oxidation and antioxidants changes in perilla oil emulsion added with chlorophyll were studied during storage in the dark or under 1,700 lux light at $25^{\circ}C$ for 48 h. The emulsion was consisted of perilla oil (33.12 g), 5% acetic acid (66.23 g), egg yolk powder (0.5 g), and xanthan gum (0.15 g), and Chlorophyll b was added to the emulsion at 0, 2.5 and 4 mg/kg. The lipid oxidation was evaluated by headspace oxygen consumption and hydroperoxide formation, and tocopherols and polyphenols were monitored by HPLC and spectrophotometry at 725 nm, respectively. The lipid oxidation of the perilla oil emulsion in the dark was not significant regardless of the addition of chlorophyll. Light increased and accelerated the lipid oxidation of the emulsion, and increased addition level of chlorophyll under light increased it further. However, there was no significant change in fatty acid composition in any case. Contents of tocopherols and polyphenols in the emulsion were not significantly changed during storage in the dark regardless of chlorophyll addition, indicating their little degradation. Tocopherols and polyphenols in the emulsion were significantly degraded during storage of the emulsion under light, and the degradation rate of polyphenols was increased with addition level of chlorophyll. The lipid oxidation of the perilla oil emulsion was inversely related with the residual amounts of tocopherols and polyphenols, with more dependent on the retention of polyphenols than that of tocopherols.

Changes in Flavor Characteristics and Shelf-life of Roasted Coffee in Different Packaging Conditions during Storage (포장 조건에 따른 저장 중 커피의 향미 특성의 변화와 보존 기간)

  • Moon, Jun-Woong;Cho, Jae-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.441-447
    • /
    • 1999
  • Changes in flavor characteristics of roasted coffee in 6 package models during storage were investigated by GC/MS analysis and sensory evaluation to establish the criteria of the shelf-life of the roasted coffee in three flavor quality-'fresh', 'satisfying' and 'minimally acceptable' levels. In direct headspace method of GC/MS, 47 volatile compounds were analyzed and the light volatile compounds were reduced sharply at initial stage of storage and faster in the package with air. The correlation between % retention of 2,3-butanedione and overall aroma of roasted coffee showed good linear-relation, of which correlation coefficient (R) were from 0.999 to 0.904 depending on package models, indicating that 2,3-butanedione would be an index chemical for evaluating the freshness of roasted coffee. In sensory evaluation of 6 package models during storage, roasted whole beans (RB) and roasted and ground (RG) coffee in air-package were preserved in 'fresh quality' for $0.5{\sim}1$ week, 'satisfying quality' for $2{\sim}3$ weeks and 'minimally acceptable quality' for 12 weeks, while roasted whole beans in valve-package and roasted and ground coffees in vacuum-package, nitrogen-package and oxygen absorbent-package were preserved in 'fresh quality' for $2{\sim}4$ weeks, 'satisfying quality' for $12{\sim}24$ weeks and 'minimally acceptable quality' for 52 weeks. The oxygen absorbent-package was slightly less effective than other three methods.

  • PDF

Roles of Phospholipids in Flavor Stability of Soybean Oil (대두유 향미안정성에 있어서 인지방질의 역할)

  • Yoon, Suk-Hoo;Min, David-B.
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.23-28
    • /
    • 1987
  • The effects of phosphatidyl choline (PC), phosphatidyl ethanolamine (PE), phosphatidyl inositol (PI), phosphatidic acid (PA), phosphatidyl glycerol (PG), and cardiolipin (CL) on the flavor stability of purified soybean oil were studied. Purified soybean oil obtained from soybean oil by silicic acid chromatography does not contain measurable iron, tocopherols and phospholipids. Three hundred ppm of PC, PE, PI, PA, PG, or CL was added to the purified soybean oil, with and without 1ppm ferrous iron added. The flavor stability of sample, which was stored at $60^{\circ}C$ for 10 days in dark oven, was determined by a combination of volatile compounds formation and molecular oxygen disappearence in the headspace of air-tightly sealed serum bottle every 48 hrs. Results showed that, in general, phospholipids worked as prooxidant in the pufified soybean oil without ferrous iron added, and worked as antioxidant in the oil, when added 1ppm ferrous iron. The results also suggest that phospholipids work as prooxidant by increasing the solubility of oxygen on the surface of oil, and work as antioxidant in the oil containing 1 ppm ferrous iron by chelating iron. The results showed that PE and PA are better antioxidants than PC and PG. CL and PI showed the lest antioxidant activities in the oil will 1ppm ferrous iron added.

  • PDF

The antioxidant ability of nutmeg ethanolic extract in bulk oil and oil-in-water emulsion matrices (식물성 유지 및 수중유적형 유화계에서 육두구 종자 에탄올 추출물의 항산화활성 평가)

  • Ji-Eun Kim;Ji-Yun Bae;Mi-Ja Kim
    • Food Science and Preservation
    • /
    • v.30 no.2
    • /
    • pp.334-346
    • /
    • 2023
  • The antioxidant ability of 80% ethanolic extract of nutmeg seed (NM80) was evaluated using in vitro assays and bulk oil and oil-in-water (O/W) emulsion matrices. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) cation radical scavenging, and oxygen radical antioxidant capacity (ORAC) in vitro assays were used to evaluate the antioxidant ability of the extract. The DPPH radical scavenging activities of 25, 50, 100, and 200 ㎍/mL NM80 were 12.5, 20.9, 35.1, and 62.8%, respectively, while the ABTS cation radical scavenging activities were 2.7, 6.5, 30.5, and 29.8%, respectively, demonstrating a dose-dependent effect. The ORAC value was significantly higher at an NM80 concentration of 25 ㎍/mL than the positive control (p<0.05). The conjugated dienoic acid (CDA), ρ-anisidine, and tertiary butyl alcohol values in 90-min-heated corn oil containing 200 ppm of NM80 were significantly reduced by 3.26, 16.94, and 17.34%, respectively, compared to those for the sample without NM80 (p<0.05). However, the headspace oxygen content and CDA value in the O/W emulsion containing 200 ppm of NM80 at 60℃ had 6.29 and 82.85% lower values, respectively, than those for the sample without NM80 (p<0.05). The major volatile compounds of NM80 were allyl phenoxyacetate, eugenol acetate, and eugenol. NM80 could be an effective natural antioxidant in lipid-rich foods in bulk oil or O/W emulsion matrix.

Antioxidant properties and oxidative stability of celery seeds ethanol extract using in vitro assays and oil-in-water emulsion (샐러리 종자 에탄올 추출물의 산화방지 활성 및 수중유적형 유화계에서의 산화안정성)

  • Kim, Min-Ah;Han, Chang Hee;Lee, Jae-Cheol;Kim, Mi-Ja
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.480-485
    • /
    • 2017
  • This study was conducted to examine the antioxidant activity of 80% ethanol extract of celery seeds and to verify the effectiveness of extracts as a natural antioxidant to improve the stability of oil-in-water emulsions. The radical scavenging activity of 80% ethanol extract of celery seeds was significantly increased at 0.125, 0.25, and 0.5 mg/mL (p<0.05). Additionally, the total phenolic content and FRAP value were equal to $8.2{\pm}2.3mol$ tannic acid equivalent/g extract and $195.0{\pm}12.6mol$ ascorbic acid equivalent/g extract, respectively. The headspace oxygen content was significantly higher in the group treated with 80% ethanol extract of celery seeds than in the control group (p<0.05). The amounts of lipid hydroperoxide and conjugated diene were significantly reduced compared to the control group (p<0.05). The results showed that the extract of celery seeds had excellent antioxidant ability and it could be used as a natural antioxidant owing to the increased oxidative stability of the emulsified product.

Physicochemical and sensory characteristics of Samgyetang retorted at different F0 values during storage at room temperature (F0값 수준을 달리한 삼계탕의 실온 저장 중 물리화학적 및 관능학적 특성)

  • Lee, Jin Hwan;Lee, Jin Ho;Lee, Keun Taik
    • Food Science and Preservation
    • /
    • v.21 no.4
    • /
    • pp.491-499
    • /
    • 2014
  • Changes in various physicochemical and sensory characteristics of Samgyetang retorted at the $F_0$ values of 4.0 (F4), 7.0 (F7), and 10.0 (F10) were investigated during storage at $25^{\circ}C$ for 12 months. The pH level tended to decrease in all the treatments with the increase of the storage time, but no significant difference in the extent of the decrease was observed among the treatments. The values of volatile basic nitrogen, thiobarbituric reactive substances, and carbonyl contents increased rapidly over the storage period in the order of F4 > F7 > F10. The viscosity decreased most sharply between month 0 and month 2, after which the rate of increase declined. The oxygen concentration in the headspace of the retort pouch of the Samgyetang was higher for the samples retorted at higher $F_0$ values. In the sensory tests, the scores of the samples retorted at higher $F_0$ values tended to be lower, but all the characteristics of the samples, except for the texture of the T10 samples, were evaluated with scores higher than 5.0, the limit of marketability, over the storage time. In conclusion, the quality of the Samgyetang samples treated at higher $F_0$ values deteriorated more noticeably during storage.

Effect of Packaging Systems with High CO2 Treatment on the Quality Changes of Fig (Ficus carica L) during Storage (저장 중 무화과(Ficus carica L) 선도유지를 위한 고농도 이산화탄소 처리된 포장 시스템 적용 연구)

  • Kim, Jung-Soo;Chung, Dae-Sung;Lee, Youn Suk
    • Food Science and Preservation
    • /
    • v.19 no.6
    • /
    • pp.799-806
    • /
    • 2012
  • This experiment was conducted to establish the optimum conditions for high $CO_2$ gas treatment in combination with a proper gas-permeable packaging film to maintain the quality of fig fruit (Ficus carica L). Among the fig fruits with different high $CO_2$ treatments, the quality change was most effectively controlled during storage in the 70%-$CO_2$-treated fig fruit. Harvested fig fruit was packaged using microperforated oriented polypropylene (MP) film to maintain the optimum gas concentrations in the headspace of packaging for the modified-atmosphere system. MP film had an oxygen transmission rate of about $10,295cm^3/m^2$/day/atm at $25^{\circ}C$. The weight loss, firmness, soluble-solid content (SSC), acidity (pH), skin color (Hunter L, a, b), and decay ratio of the fig fruits were monitored during storage at 5 and $25^{\circ}C$. The results of this study showed that the OPP film, OPP film + 70% $CO_2$, and MP film+70% $CO_2$ were highly effective in reducing the loss rate, firmness and decay occurrence rate of fig fruits that were packaged with them during storage. In the case of using treatments with packages of OPP film and OPP film+70% $CO_2$, however, adverse effects like package bursting or physiological injury of the fig may occur due to the gas pressure or long exposure to $CO_2$. Therefore, the results indicated that MP film containing 70% $CO_2$ can be used as an effective treatment to extend the freshness of fig fruits for storage at a proper low temperature.