• Title/Summary/Keyword: heading change

Search Result 163, Processing Time 0.019 seconds

Analysis of driver behavior related to frontal vehicle collision direction (정면충돌의 충돌방향과 관련된 운전자의 행동분석)

  • Lee, Myung-Lyeol;Kim, Ho-Jung;Lee, Kang-Hyun;Kim, Sang-Chul;Lee, Hyo-Ju;Choi, Hyo-Jueng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.530-537
    • /
    • 2016
  • This study investigates frontal crashes, analyzes the driver's action related to the change of the collision direction and determines the severity of (bodily injury). This study was conducted from August, 2013, to January, 2014, and the data for the car damage and human body damage were collected by emergency medical teams. In terms of data collection, we collected the accident vehicle, crash direction, body damage, etc., based on the Korea In-depth Accident Study (KIDAS) and Injury Severity Score (ISS). We used Minitab 17 and SPSS 22.0 to do the frequency analysis and ANOVA. In the analysis results, the prevalence of frontal collisions was 55.8% and mostly occurred in the 12 o'clock direction. In the analysis of the frontal crash direction according to age, the average ages for the 11, 12 and 1 o'clock directions were $46.46{\pm}13.47$, $44.43{\pm}13.40$ and $52.46{\pm}12.04$, respectively, so the older age drivers had a high probability of the accident occurring in the 1 o'clock direction. In the analysis of men's frontal collision direction according to age, the average ages in the 11, 12 and 1 o'clock directions were $47.10{\pm}13.88$, $45.24{\pm}13.78$ and $55.73{\pm}13.38$, respectively, so older aged men had a high probability of having collisions in the 1 o'clock direction. However, the statistical analysis of the frontal crash direction according to age in women didn't show any meaningful trend. When comparing the ISS according to age of the men and women in the collision direction, the men were less likely to have a 12 o'clock collision when $ISS{\geq}9$ and more likely to have a 1 o'clock collision when ISS<9. As a result, frontal crashes are more likely to occur in the 12 o'clock direction and the ISS decreases because the likelihood of frontal crashes in the 1 o'clock direction increases with increasing age. Therefore, when men recognize that they are heading for a 12 o'clock direction collision, they try to steer to the left to reduce the body damage.

Analysis of Quality and Processing Suitability of Mixed Seeding and Flour Blending between Wheat Varieties (밀 품종 혼파와 밀가루 혼합에 따른 품질 및 가공적성 분석)

  • Kim, Kyeong-Min;Kim, Kyeong-Hoon;Kang, Chon-Sick;Jeong, Han young;Choi, Chang-Hyun;Park, Jinhee;Son, Jae-Han;Yang, Jinwoo;Kim, Young-Jin;Park, Tae-Il;Kweon, Meera
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.3
    • /
    • pp.225-233
    • /
    • 2019
  • This study was conduct to investigate the effect of mixed seed sowing and flour blending on the uniformity of flour quality of Korean domestic wheat. Two wheat varieties (Keumkang and Baegjoong) were selected for sowing mixed seeds, and their growth characteristics and flour quality were analyzed. Quality of flour blending with the same varieties was also evaluated. The ratios for mixed seed sowing and flour blending were from 0 to 100% with a 10% increase of interval for each treatment. On increasing the portion of Baegjoong in mixed seed sowing, the heading time was a little delayed, however, yield increased. The results of the flour quality showed lower damaged starch content and sodium carbonate SRC (solvent retention capacity) value for Keumkang than for Baegjoong. Protein quantity by protein content and quality by SDSS (Sodium Dodecyle Sulfate-Sedimentation) volume, lactic acid SRC, and mixograph pattern of Keumkang were superior to those of Baegjoong. Compared with mixed seed sowing, overall quality characteristics of flours with different ratios showed predictable and proportional change by flour blending. This demonstrated the successful application of flour blending, compared with mixed seed sowing, for improving the uniformity of flour quality.

Effects of Nitrogen Application Levels on Grain Yield and Yield-related Traits of Rice Genetic Resources (질소비료 시비 수준이 벼의 수량 및 수량구성요소에 미치는 영향)

  • Tae-Heon Kim;Suk-Man Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.276-284
    • /
    • 2023
  • Nitrogen is a major and essential macronutrient for plant growth and development. However, excessive nitrogen application can lead to ecological pollution or greenhouse gas emissions, consequently resulting in climate change. In this study, we used 153 genetic resources of rice to evaluate the effects of the levels of nitrogen application on grain yield and yield-related traits. Significant differences were noted in the yield and yield-related traits of genetic resources between two nitrogen application levels, namely, 4.5 kg/10a (NN: normal nitrogen condition) and 9.0 kg/10a (LN: low-nitrogen condition). Among the tested traits, days to heading (DTH), clum length (CL), grain yield per plant (GYP), number of panicles per plant (NPP), and number of spikelets per panicle (NSP) decreased by 1.8 to 17.9% when the nitrogen application levels decreased from NN to LN. The 1,000-grain weight (TWG) and percentage of ripened grain (PRG) increased by 2.6 to 11.2% under these conditions. Based on nitrogen application levels, two-way analysis of variance (ANOVA) demonstrated significant differences in GYP, NPP, and PRG but not in NSP and TGW. NPP exhibited negative correlations with NSP (-0.44) and TGW (-0.44), and TGW displayed a negative correlation with PRG (-0.34), whereas, GYP exhibited a positive correlation with PRG (0.37) and NSP (0.38). A similar pattern was recorded under the LN condition. NPP, TGW, and PRG were clustered as PA (principle axis) 1 under the LN condition by factor analysis. NSP and GYP were clustered as PA (principle axis) 2. These results demonstrated NPP and NSP as the primary factors contributing to the decrease in grain yield under LN conditions. In conclusion, we selected eight genetic resources that exhibited higher GYP under both NN and LN conditions with higher NPP or NSP. These genetic resources can be considered valuable breeding materials for the adaptation of plants to nitrogen deficiency.