• 제목/요약/키워드: heading angle

검색결과 229건 처리시간 0.027초

MEMS Gyro North Finding 방법을 이용한 실내 이동로봇의 전방향 탐지 (Indoor Mobile Robot Heading Detection Using MEMS Gyro North Finding Approach)

  • 위원룡;이민철;김지언
    • 로봇학회논문지
    • /
    • 제6권4호
    • /
    • pp.334-343
    • /
    • 2011
  • This paper presents a new approach for mobile robot heading detection using MEMS Gyro north finding method in the indoor environment. Based on this, the robot heading angle measurement scheme is proposed; improved north finding theory and algorithm are also explained. Several approaches are applied to confirm system's precision and effectiveness. In order to find out the heading angle, a single axis MEMS gyroscope to sense the angle between the robot heading direction and the north is used. To reach enough estimation accuracy and reduce detection time, the least square method (LSM) for the signal fitting and parameter estimation is applied. Through a turn-table, we setup a carouseling system to decrease the substantial bias effect on gyroscope's heading angle. For the evaluation of the proposed method, this system is implemented to the Pioneer robot platform. The performance and heading error are analyzed after the test. From the simulation and experimental results, system's accuracy, usefulness and adaptability are shown.

모형 스케일 자율운항 해양 이동체의 확장칼만필터 기반 측위 기법에 관한 연구 (A Study on Localization Technique Using Extended Kalman Filter for Model-Scale Autonomous Marine Mobility)

  • 유영준
    • 대한조선학회논문집
    • /
    • 제61권2호
    • /
    • pp.98-105
    • /
    • 2024
  • Due to the low accuracy of measured data obtained from low-cost GNSS and IMU devices, it was hard to secure the required accuracy of the measured position and heading angle for autonomous navigation which was conducted by a model-scale marine mobility. In this paper, a localization technique using the Extended Kalman Filter (EKF) is proposed for coping with the issue. First of all, a position and heading angle estimator is developed using EKF with the assumption of a point mass model. Second, the measured data from GNSS and IMU, including position, heading angle, and velocity are used for the estimator. In addition, the heading angle is additionally obtained by comparing the LiDAR point cloud with map information for a temporal water tank. The newly acquired heading angle is integrated into the estimator as an additional measurement to correct the inaccuracy in the heading angle measured from the IMU. The effectiveness of the proposed approach is investigated using data acquired from preliminary tests of the model-scale autonomous marine mobility.

Vehicle Heading Angle Determination Using Magnetometer

  • Lee, Seon-Ho;Ahn, Hyo-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1259-1261
    • /
    • 2003
  • The vehicle's heading angle determination is formulated and the proposed method based on geometry engages the magnetometer and the GPS. The resulting maximum determination accuracy of 0.3deg over the entire earth as a standard deviation is obtained for a magnetometer with measurement error of 1nT.

  • PDF

위성통신 안테나의 위성 지향각도 해석적 모델의 실증 (Proof of SATCOM Antenna Heading Angle's Analytical Model)

  • 조규한
    • 한국시뮬레이션학회논문지
    • /
    • 제28권3호
    • /
    • pp.75-82
    • /
    • 2019
  • 유선통신의 사용이 제한되는 상황에서의 통신방법으로 널리 활용되는 위성통신(SATCOM)은 정지궤도위성을 사용하여 통신하기 때문에, 우주 공간의 크게 변하지 않는 한 지점으로 통신용 안테나를 지향시킴으로써 통신할 수 있다. 지상에 설치되어 움직이지 않는 안테나를 위성에 지향시키기 위해서는 안테나가 위치한 위도, 경도, 고도에서 앙각, 방위각과 같은 위성지향각도를 아는 것이 중요하다. 더욱이 비행기와 같이 움직이는 물체위에 탑재된 안테나를 이용하여 위성을 지향 할 경우 지향각도의 계산은 필수적이다. 본 연구는 정지궤도 위성을 지향하기 위해 필요한 안테나 앙각과 방위각의 계산방법을 제시하고 그 방법에 따라서 한반도 지표상의 위경도에 따라서 어떤 지향각도가 요구되는지 시뮬레이션을 수행하였다. 그리고 시뮬레이션 결과를 검증하기 위하여 모노펄스 신호(Monopulse Signal)를 이용하여 위성을 지향하는 위성통신 안테나를 비행기에 탑재하여 안테나의 위치에 따라서 지향각도가 어떻게 변하는지 실험적으로 확인하였다. 이 결과를 시뮬레이션과 비교해 봄으로써 위성통신 안테나의 지향에 필요한 앙각과 방위각의 시뮬레이션의 정확도를 확인하였고, 추가적으로 필요한 안테나 편파각의 계산에 대한 방향을 제시하였다.

입자영상유속계를 이용한 대형수송함(LPH) 갑판 상부의 유동장 측정 연구 (A Research of the Flow-Field Measurement Above the Flight Deck on LHP by PIV System)

  • 심호준;정진덕;조태환;이승훈;송지수
    • 대한조선학회논문집
    • /
    • 제59권4호
    • /
    • pp.225-234
    • /
    • 2022
  • The flow field measurement above whole area of the flight deck on 'Landing Platform Helicopter (LPH)' was performed by using PIV system in wind tunnel. In various heading angle conditions (0deg, -30deg, -45deg, -60deg, -75deg and ±90deg), the velocity fields such as U velocity & V velocity were measured at three different height above flight deck. Due to the geometrical characteristics of several bodies like deck, crane and super-structure, various vortex were generated. When the heading angle is 0deg, the deck edge vortex by flight deck and massive separation by super-structure were clearly observed by visualization with smoke and PIV, respectively. In other heading angles, the acceleration of flow in space between crane and super-structure were detected. And area with flow separation by super-structure is directly related to the heading angle of vessel.

GA-LADRC를 이용한 Mariner class vessel의 선수각 제어 (GA-LADRC based control for course keeping applied to a mariner class vessel)

  • 안종갑
    • 수산해양기술연구
    • /
    • 제59권2호
    • /
    • pp.145-154
    • /
    • 2023
  • In this study, to control the heading angle of a ship, which is constantly subjected to various internal and external disturbances during the voyage, an LADRC (linear active disturbance rejection control) design that focuses more on improving the disturbance removal performance was proposed. The speed rate of change of the ship's heading angle due to the turn of the rudder angle was selected as a significant factor, and the nonlinear model of the ship's maneuvering equation, including the steering gear, was treated as a total disturbance. It is the similar process with an LADRC design for the first-order transfer function model. At this time, the gains of the controller included in LADRC and the gains of the extended state observer were tuned to RCGAs (real-coded genetic algorithms) to minimize the integral time-weighted absolute error as an evaluation function. The simulation was performed by applying the proposed GA-LADRC controller to the heading angle control of the Mariner class vessel. In particular, it was confirmed that the proposed controller satisfactorily maintains and follows the set course even when the disturbances such as nonlinearity, modelling error, uncertainty and noise of the measurement sensor are considered.

PID 제어기를 이용한 호버링 AUV의 경유점 추적 (A Way-Point Tracking of Hovering AUV by PID control)

  • 김민지;배설봉;백운경;주문갑;하경남
    • 대한임베디드공학회논문지
    • /
    • 제10권4호
    • /
    • pp.257-264
    • /
    • 2015
  • For the tracking of the way-points of hovering AUV (HAUV), we suggest a simple PID controller. The way-points are designed to approach to a virtual underwater structure and the heading angles at each way-point are set to look at the structure in the face. The proposed controller consists of a vertical controller to maintain the depth and pitch angle, and a horizontal controller to move to the desired position as well as to adjust the heading angle of the HAUV. In the simulation using Matlab/Simulink, the HAUV with the proposed PID controller is shown to track all the way-points within 1 m range while maintaining proper heading angle at each way-point.

주행조건 식별을 이용한 로봇청소기의 진행각 추정을 위한 향상된 필터설계 (Improved Yaw-angle Estimation Filter as a Function of the Actual Maneuvers for a Cleaning Robot)

  • 조윤희;이상철;홍성경
    • 제어로봇시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.470-476
    • /
    • 2016
  • This paper proposes a practical algorithm for the reduction of measurement errors due to drift in a micro-electromechanical system (MEMS) gyros that are used for a mobile robot. Any drift in a MEMS gyro will cause an unbounded growth of errors in the estimation of heading, which makes it nearly useless in applications that require high accuracy over a long operating time. In proposed method, maneuvers of a cleaning robot are observed through encoders' measurement process and a decision to correct bias drift will be made if necessary. The method used in this paper is called the "heading estimation filter". To evaluate the accuracy of the proposed method, a comparison was made between the estimation of the heading of the cleaning robot and one from a motion capture system.

실해역 환경에서 무인 잠수정의 초기 상태 정렬을 위한 GPS와 관성 항법 센서 기반 항법 정렬 알고리즘 (GPS and Inertial Sensor-based Navigation Alignment Algorithm for Initial State Alignment of AUV in Real Sea)

  • 김규현;이지홍;이필엽;김호성;이한솔
    • 로봇학회논문지
    • /
    • 제15권1호
    • /
    • pp.16-23
    • /
    • 2020
  • This paper describes an alignment algorithm that estimates the initial heading angle of AUVs (Autonomous Underwater Vehicle) for starting navigation in a sea area. In the basic dead reckoning system, the initial orientation of the vehicle is very important. In particular, the initial heading value is an essential factor in determining the performance of the entire navigation system. However, the heading angle of AUVs cannot be measured accurately because the DCS (Digital Compass) corrupted by surrounding magnetic field in pointing true north direction of the absolute global coordinate system (not the same to magnetic north direction). Therefore, we constructed an experimental constraint and designed an algorithm based on extended Kalman filter using only inertial navigation sensors and a GPS (Global Positioning System) receiver basically. The value of sensor covariance was selected by comparing the navigation results with the reference data. The proposed filter estimates the initial heading angle of AUVs for navigation in a sea area and reflects sampling characteristics of each sensor. Finally, we verify the performance of the filter through experiments.

AHRS을 이용한 자세결정과 Heading 산출을 위한 연구 (The Study for attitude determination and heading production using AHRS)

  • 백기석;박운용;차성렬;홍순헌
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2004년도 춘계학술발표회논문집
    • /
    • pp.59-64
    • /
    • 2004
  • In this paper, the error compensation method of the low-cost IMU is proposed. In general, the position and attitude error calculated by accelerometers and gyros grows with time. Therefore the additional information is required to compensate the drift. The attitude angles can be bound accelerometer mixing algorithm and the heading angle can be aided by single antenna GPS velocity. The Kalman filter is used for error compensation. The result is verified by comparing with the attitude calculated by Attitude Heading Reference System with Micro Electro Mechanical System for a basis

  • PDF