• Title/Summary/Keyword: head-shielding plate

Search Result 4, Processing Time 0.021 seconds

Evaluation of a Curtain-Type Radiation Protection Device for Veterinary Interventional Procedures

  • Minsik Choi;Jaepung Han;Changgyu Lim;Jiwoon Park;Sojin Kim;Uhjin Kim;Jinhwa Chang;Dongwoo Chang;Namsoon Lee
    • Journal of Veterinary Clinics
    • /
    • v.41 no.3
    • /
    • pp.157-164
    • /
    • 2024
  • The standard radiation protection method in the angiography suite involves the use of a thyroid shield, a lead apron, and lead glasses. However, exposure to substantial amounts of ionizing radiation can cause cataracts, tumors, and skin erythema. A newly developed curtain-type radiation protection device consists of a curtain drape composed of a five-layer bismuth and lead acrylic head-shielding plate, with both bearing an equivalent 0.25 mm lead thickness. In this study, a quality assurance phantom was used as the patient to create radiation scatter from the radiographic source, and an anthropomorphic mannequin phantom was used as the interventionalist to measure the radiation dose at seven different anatomical locations. Thermoluminescent dosimeters were used to measure the radiation dose. The experimental groups consisted of all-sided or one-sided curtain set-ups, the presence or absence of a conventional shielding system, and the orientation of beam irradiation. Consequently, the curtain-type radiation protection device exhibited better radiation protection range and capabilities than conventional radiation protection systems, especially in safeguarding the forehead, eyes, arms, and feet, with minimal radiation exposure. Moreover, the mean shielding ratios of the conventional shielding system and curtain-type radiation protection device were measured at 51.94% and 93.86%, respectively. Additionally, no significant decrease in the radiation protection range or capability was observed, even with changes in the beam orientation or one-sided protection. Compared with a conventional shielding system, the curtain-type radiation protection device decreased radiation exposure doses and improved comfort. Therefore, it is a potential new radiation protection device for veterinary interventional procedures.

Characteristics of Superconductive Pb shield for a Whole Head MEG System (헬멧형 뇌자도 장치로의 활용을 위한 Pb 초전도 차폐의 특성)

  • Yu, K.K.;Kim, K.;Lee, Y.H.;Kwon, H.
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.30-35
    • /
    • 2009
  • We have investigated the characteristics of a superconductive Pb shield for hemispherical shape and plate to improving signal-to-noise ratio(SNR) of biomagnetism. We measured the shielding factor for the position of helmet shape Pb and for changing the distance from Pb surface. To make a uniform magnetic field, a $1.5m{\times}1.5m$ set of the helmholtz coils activated at several frequencies. The shielding factor of hemispherical shape Pb was from 20 to 57 dB and of Pb plate was about $6{\sim}26dB$ as a function of distance from the lead surface. The shielding factor was rapidly reduced as increasing the distance from Pb surface. The white noise of superconductive quantum interference device(SQUID) with a superconductive shield was about $12fT/Hz^{1/2}$ at 1 Hz, $7fT/Hz^{1/2}$ at 100 Hz. The white noise was more increased about two times than conventional SQUID system without Pb shielding. An auditory signal was measured by first order gradiometer and magnetometer with Pb superconductive shield and compared the SNR. The SQUID system with Pb shield had better performance at low frequency noise level.

  • PDF

Numerical Stress Analysis of bone plate System using 3-dimensional finite element method (3차원 유한 요소법을 이용한 골절판의 응력 해석)

  • Kim, Hyun-Su;Kwon, Young-Soo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.05
    • /
    • pp.74-78
    • /
    • 1991
  • Conventional compression bone fracture plates sometimes cause osteoporosis under the plate due to their high rigidity which in turn transfer physiological load mostly through the plates and screws. In order to prevent the osteopenia we have designed a system which have a viscoelastic washer between plate and screw head. The washer is made of a biocompatible ploymer (untra high molecular weight polyethylene, UHMWPE). Three-dimensional finite element meshes of the human femur with the conventional and new concept bone plate ere generated and the comparative stress analyses are performed with static half-stance loading condition. The results of analyses showed that could reduce the stress shielding effect compared with the conventional plate.

  • PDF

Usefulness assessment of secondary shield for the lens exposure dose reduction during radiation treatment of peripheral orbit (안와 주변 방사선 치료 시 수정체 피폭선량 감소를 위한 2차 차폐의 유용성 평가)

  • Kwak, Yong Kuk;Hong, Sun Gi;Ha, Min Yong;Park, Jang Pil;Yoo, Sook Hyun;Cho, Woong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.87-95
    • /
    • 2015
  • Purpose : This study presents the usefulness assessment of secondary shield for the lens exposure dose reduction during radiation treatment of peripheral orbit. Materials and Methods : We accomplished IMRT treatment plan similar with a real one through the computed treatment planning system after CT simulation using human phantom. For the secondary shield, we used Pb plate (thickness 3mm, diameter 25mm) and 3 mm tungsten eye-shield block. And we compared lens dose using OSLD between on TPS and on simulation. Also, we irradiated 200 MU(6 MV, SPD(Source to Phantom Distance)=100 cm, $F{\cdot}S\;5{\times}5cm$) on a 5cm acrylic phantom using the secondary shielding material of same condition, 3mm Pb and tungsten eye-shield block. And we carried out the same experiment using 8cm Pb block to limit effect of leakage & transmitted radiation out of irradiation field. We attached OSLD with a 1cm away from the field at the side of phantom and applied a 3mm bolus equivalent to the thickness of eyelid. Results : Using human phantom, the Lens dose on IMRT treatment plan is 315.9cGy and the real measurement value is 216.7cGy. And after secondary shield using 3mm Pb plate and tungsten eye-shield block, each lens dose is 234.3, 224.1 cGy. The result of a experiment using acrylic phantom, each value is 5.24, 5.42 and 5.39 cGy in case of no block, 3mm Pb plate and tungsten eye-shield block. Applying O.S.B out of the field, each value is 1.79, 2.00 and 2.02 cGy in case of no block, 3mm Pb plate and tungsten eye-shield block. Conclusion : When secondary shielding material is used to protect critical organ while irradiating photon, high atomic number material (like metal) that is near by critical organ can be cause of dose increase according to treatment region and beam direction because head leakage and collimator & MLC transmitted radiation are exist even if it's out of the field. The attempt of secondary shield for the decrease of exposure dose was meaningful, but untested attempt can have a reverse effect. So, a preliminary inspection through Q.A must be necessary.

  • PDF