• 제목/요약/키워드: head and hand region segmentation

검색결과 2건 처리시간 0.048초

인간의 행동 인식을 위한 얼굴 방향과 손 동작 해석 (Analysis of Face Direction and Hand Gestures for Recognition of Human Motion)

  • 김성은;조강현;전희성;최원호;박경섭
    • 제어로봇시스템학회논문지
    • /
    • 제7권4호
    • /
    • pp.309-318
    • /
    • 2001
  • In this paper, we describe methods that analyze a human gesture. A human interface(HI) system for analyzing gesture extracts the head and hand regions after taking image sequence of and operators continuous behavior using CCD cameras. As gestures are accomplished with operators head and hands motion, we extract the head and hand regions to analyze gestures and calculate geometrical information of extracted skin regions. The analysis of head motion is possible by obtaining the face direction. We assume that head is ellipsoid with 3D coordinates to locate the face features likes eyes, nose and mouth on its surface. If was know the center of feature points, the angle of the center in the ellipsoid is the direction of the face. The hand region obtained from preprocessing is able to include hands as well as arms. For extracting only the hand region from preprocessing, we should find the wrist line to divide the hand and arm regions. After distinguishing the hand region by the wrist line, we model the hand region as an ellipse for the analysis of hand data. Also, the finger part is represented as a long and narrow shape. We extract hand information such as size, position, and shape.

  • PDF

MR머리 영상의 뇌 경계선 추출 및 디렉트 볼륨 렌더링 (Extraction of Brain Boundary and Direct Volume Rendering of MRI Human Head Data)

  • 송주환;권오봉;이건
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제8권6호
    • /
    • pp.705-716
    • /
    • 2002
  • 본 논문은 MR 머리 영상 데이타를 디렉트 볼륨 렌더링하는 방법을 제안한다. MR 영상을 가시화하기 위해서는 서피스 렌더링을 많이 사용하나 이 방법은 면을 추출하는 과정에서 면 내부의 정보를 잃어버린다. 디렉트 볼륨 렌더링은 면 내부의 정보를 추출 할 수 있으나 데이타의 특성상 MR 머리 영상 데이타에 이 방법을 적용하기가 쉽지 않다. 이 논문에서는 MR 머리 영상 데이타를 뇌와 뇌 이외의 구성 요소로 분할한 다음에 뇌 복셀값을 증가시키고 원래의 영상과 다시 결합시켜 디렉트 볼륨 렌더링을 시도하였다. 뇌 경계선은 히스토그램 경계값, 모포로지 연산, 스네이크 알고리즘(snakes algorithm)을 이용하여 추출하였다. 추출된 뇌 경계선는 육안으로 추출한 것의 91~95%의 유사도를 보인다. 제안된 디렉트 볼륨 렌더링은 뇌와 뇌 이외의 구성 요소를 동시에 3차원 가시화하였다.