• 제목/요약/키워드: he Galaxy

검색결과 11건 처리시간 0.022초

Surface Brightness Fluctuation of Normal and Helium-enhanced Simple Stellar Populations

  • Chung, Chul;Yoon, Suk-Jin;Cho, Hyejeon;Lee, Sang-Yoon;Lee, Young-Wook
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.31.3-32
    • /
    • 2020
  • The surface brightness fluctuation (SBF) is one of the most crucial distance indicators for unresolved stellar systems at large distances. Here, we present an evolutionary population synthesis model of the surface brightness fluctuation (SBF) for normal and He-enriched simple stellar populations (SSPs). Our SBF model for the normal-He population agrees well with other existing models, but the He-rich populations bring about a substantial change in the SBF of SSPs. Our normal-He SBF model well reproduces the observed SBFs of the Milky Way globular clusters, but the SBFs of early-type galaxies in the Virgo Cluster are placed between the normal-He and He-rich SBF models. We show that the SBF-based distance estimation would be affected by up to a 10-20% level in I- and near-IR bands at given colors. Finally, we propose that when combined with independent metallicity and age indicators such as Mg2 and H��, the UV and optical SBFs can readily detect underlying He-rich populations in unresolved stellar systems. Given the degree of the SBF variation resulting from the population difference, we suggest that the distance measurement before the proper in-depth analysis of stellar populations should be done with great caution.

  • PDF

구텐베르크 은하계와 음악 (Gutenberg Galaxy and Music)

  • 김효경
    • 트랜스-
    • /
    • 제5권
    • /
    • pp.49-64
    • /
    • 2018
  • 미디어 학자 마샬 맥루언은 구텐베르크 은하계라는 단어를 통하여 인쇄술이 인간에게 부여한 새로운 환경을 논하였다. 구술, 필사, 인쇄로 이어진 미디어의 진화는 인간의 삶에 있어 부수적인 존재였던 미디어를 하나의 환경으로 확장시켰고, 구텐베르크 은하계 속에서 인간의 삶은 매우 다르게 변화하였다. 본 연구는 구텐베르크 인쇄술의 개발이 인간의 삶을 넘어 음악, 특히 낭만주의 음악에 어떠한 영향을 끼쳤는지에 관하여 집중해보고자 한다. 인쇄술이 낳은 가장 대표적인 미디어는 책이라 할 수 있다. 같은 공간 아래 있을 때 정보 전달이 수월했던 구술, 필사와 달리 상대적으로 공간적 제약으로부터 자유로운 인쇄술의 개발은 지식과 정보를 그 질과 양에 있어 획기적으로 변화시킨다. 이전의 정보가 인간의 생활과 밀접한 형태를 띠고 있었다면, 책 속의 지식과 정보들은 신화의 세계와 같이 실생활을 넘어선 다른 세상으로 지식의 영역을 확장시킨다. 즉, 눈에 보이지 않는 세계로 지식의 영역을 확장시킨 것이다. 이와 같은 지식의 변화는 자연스레 인간의 사고를 확장시켰고, 사고의 확장은 곧 근대 서양 사회의 모든 분야에 영향을 끼친다. 인쇄 악보를 매개로하여 점진적으로 대중화되던 음악계 또한 예외가 아니었다. 인쇄술이 형성시킨 구텐베르크 은하계는 실용 음악에 가까웠던 이전의 음악 형태와 달리 음악 안에 신비와 환상의 세계를 심어놓았다. 그리고 이러한 현상은 낭만주의라는 하나의 흐름을 형성시킨다. 본 연구는 구텐베르크 은하계가 변화시킨 음악, 특히 낭만주의 음악에 집중하여, 미디어와 음악의 상관성을 증명해보고자 한다.

  • PDF

우리은하 중온 이온화 매질의 광이온화 모델 (PHOTOIONIZATION MODELS OF THE WARM IONIZED MEDIUM IN THE GALAXY)

  • 선광일
    • 천문학논총
    • /
    • 제22권4호
    • /
    • pp.89-95
    • /
    • 2007
  • The warm ionized medium (WIM) outside classical H II regions is a fundamental gas-phase constituent of the Milky Way and other late-type spiral galaxies, and is traced by faint emission lines at optical wavelengths. We calculate the photoionization models of the WIM in the Galaxy by a stellar UV radiation with the effective temperature 35,000 K assuming not only spherical geometry but also plane parallel geometry, and compare the results with the observed emission line ratios. We also show the dependence of the emission line ratios on various gas-phase abundances. The emergent emission-line ratios are in agreement with the average-values of observed ratios of [S II] ${\lambda}6716/H{\alpha}$, [N II] ${\lambda}6583/H{\alpha}$, [O I] ${\lambda}6300/H{\alpha}$, [O III] ${\lambda}5007/H{\alpha}$, He I ${\lambda}5876/H{\alpha}$. However, their extreme values could not be explained with the photoionization models. It is also shown that the addition of all stellar radiation from the OB stars in the Hipparcos stellar catalog resembles that of an O7-O8 type star.

THE DYNAMICAL STRUCTURES OF DENSE MOLECULAR CLOUDS IN THE GALACTIC CENTER REGION & THEIR IMPLICATIONS

  • LEE C. W.;LEE H. M.;ANN H. B.;KWON K. H.
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.161-163
    • /
    • 1996
  • We have studied the response of molecular clouds in the Galactic disk to a rotating bar by conducting Smoothed Particle Hydrodynamics (SPH) simulations for the Galaxy in order to understand the dynamical structures of the Galactic Center (GC) molecular clouds, and their implications. In our study it was found that the structures of GC molecular clouds could be induced by the combined effects of rotating bar potential, the hydrodynamic collisions and gravitational miss collisions between the clouds.

  • PDF

Constraints on Cosmological Models from the Large-Scale Velocity Field

  • Doh, Jean-Gyung;Park, Changbom-;Chun, Mun-Suk
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 1992년도 한국우주과학회보 제2권1호
    • /
    • pp.16-16
    • /
    • 1993
  • The Cosmic Mach number M is the ratio of the bulk flow velocity of the galaxrvelocity field on some scale R to the unall scale velocity dispersion within refcions of scale R. Because M is the ratio of two velocities, it is inn-dimansionat and the Here, independent of the amplitude of the power specHim and of the biasplnmeter in the linear theory. We have measured the Mach rnlmber for two observational samples: a spiral galaxy sample(AHM) of Aaronson and hiscoBlaborators with absolute distances measured by the infrared Ttillr-Fisher relatioa and an elliptical galaxy sample(EGALS) of Faber or 0, with distances determined by the relation. The effective depths distances of galaxies from the Local Group of these samples are 1639 km/s and 2862 e/s, respectivelr. The Machnumbers from these observed peculiar velocity Selds He fund as M=0.95 for AHMand M=0.59 for EGALS. We comPBre these calculated Mach numbers with thosefrom meck surweys drawn fuom three cosnulogical medels: the stand8rd biased nh=0.5 CDM modet an open CDM rrudel with gh=0.2, and a medd with thepower-law power specelm P(k)-k-1 and n=1. The Mach rnlmber test can give robust constraints on these cosmelogical nudels whose power spectra have very different shapes at large scales.

  • PDF

Optical spectroscopy of LMC SNRs to reveal the origin of [P II] knots

  • Aliste C., Rommy L.S.E.;Koo, Bon-Chul;Seok, Ji Yeon;Lee, Yong-Hyun
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.65.2-66
    • /
    • 2021
  • Observational studies of supernova (SN) feedback are limited. In our galaxy, most supernova remnants (SNRs) are located in the Galactic plane, so there is contamination from foreground/background sources. SNRs located in other galaxies are too far, so we cannot study them in detail. The Large Magellanic Cloud (LMC) is a unique place to study the SN feedback due to their proximity, which makes possible to study the structure of individual SNRs in some detail together with their environment. Recently, we carried out a systematic study of 13 LMC SNRs using [P II] (1.189 ㎛) and [Fe II] (1.257 ㎛) narrowband imaging with SIRIUS/IRSF, four SNRs (SN 1987A, N158A, N157B and N206), show [P II]/[Fe II] ratio much higher than the cosmic abundance. While the high ratio of SN 1987A could be due to enhanced abundance in SN ejecta, we do not have a clear explanation for the other cases. We investigate the [P II] knots found in SNRs N206, N157B and N158A, using optical spectra obtained last November with GMOS-S mounted on Gemini-South telescope. We detected several emission lines (e.g., H I, [O I], He I, [O III], [N II] and [S II]) that are present in all three SNRs, among other lines that are only found in some of them (e.g., [Ne III], [Fe III] and [Fe II]). Various line ratios are measured from the three SNRs, which indicate that the ratios of N157B tend to differ from those of other two SNRs. We will use the abundances of He and N (from the detection of [N II] and He I emission lines), together with velocity measurements to tell whether the origin of the [P II] knots are SN ejecta or CSM/ISM. For this purpose we have built a family of radiative shock with self-consistent pre-ionization using MAPPINGS 5.1.18, with shock velocities in the range of 100 to 475 km/s. We will compare the observed and modeled line fluxes for different depletion factors.

  • PDF

ABUNDANCES OF PLANETARY NEBULAE IN M 31 AND M 32

  • HYUNG SIEK;ALLER LAWRENCE H.;HAN SOO-RYEON;KIM YOUNG-KWANG;HAN WONYONG;CHOI YOUNGJUN
    • 천문학회지
    • /
    • 제33권2호
    • /
    • pp.97-110
    • /
    • 2000
  • Planetary nebulae provide a direct way to probe elemental abundances, their distributions and their gradients in populations in nearby galaxies. We investigate bulge planetary nebulae in M 31 and M 32 using the strong emission lines, H$\alpha$, He I, [O III], [N II], [S II] and [Ne III]. From the [O III] 4363/5007 line ratio and the [O II] 3727/3729, we determine the electron temperatures and number densities. With a standard modeling procedure (Hyung, 1994), we fit the line intensities and diagnostic temperatures, and as a result, we derive the chemical abundances of individual planetary nebulae in M 31 and M 32. The derived chemical abundances are compared with those of the well-known Galactic planetary nebulae or the Sun. The chemical abundances of M 32 appear to be less enhanced compared to the Galaxy or M 31.

  • PDF

우주전파 관측을 위한 광대역 음향광학 전파분광기 설계 (Design of a Wide-band Acousto-Optical Spectrometer for Radio Astronomical Observations)

  • 임인성;민경일;오승엽
    • 한국전자파학회논문지
    • /
    • 제12권6호
    • /
    • pp.1009-1017
    • /
    • 2001
  • 우주전파의 신호를 관측하기 위한 1 GHz대역의 음향광학 전파분광기를 설계.제작하였다. 이 전파분광기는 다중채널 방식의 신호의 세기가 미약한 우주 전파신호를 분석하기 위한 초고감도의 전파 분광기로, 관측되는 스펙트럼의 모양을 상세히 측정할 수 있는 전파분광기이다. 주파수 분해능과 광대역 주파수 성분을 포함하는 이 음향광학 전파분광기의 광원(optical source)으로는 He-Ne 레이저를 사용하였고, 1 GHz에서 2 GHz까지의 대역폭을 갖는 광대역 GaP 광펼향 소자를 사용하였으며, 광신호 검출을 위해 2,048 채널의 CCD를 사용하였다. 전파망원경을 통해 우주전파신호인 CRL 2688, IRC 10216 그리고 NGC 5005 은하 중심의 12CO(J= 1 ~0) 분자선(molecular line)을 관측한 결과, 광대역의 특성을 가지며 주파수 분해능이 양호함을 확인하였다.

  • PDF

Three-Dimensional Structure of Star-Forming Regions in NGC 6822 Hubble V

  • Lee, Hye-In;Oh, Heeyoung;Le, Huynh Anh N.;Pak, Soojong;Lee, Sungho;Mace, Gregory;Jaffe, Daniel T.;Nguyen-Luong, Quang;Tatematsu, Ken'ichi
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.43.3-43.3
    • /
    • 2017
  • NGC 6822 is a dwarf irregular galaxy in the Local Group and it is located in 500 kpc, further than the Large Magellanic Cloud and the Small Magellanic Cloud. Therefore, we can study star-forming processes by local condition in NGC 6822 instead of tidal force of the Galactic gravitational field. Hubble V is the brightest of several H II complexes in this galaxy. We observed Hubble V by using IGRINS attached on the 2.7 m telescope at the McDonald Observatory in Texas, US in May 2016. We performed a spectral mapping of $15^{{\prime}{\prime}}{\times} 7^{{\prime}{\prime}}$area on H and K bands, and detected emission lines of bright $Br{\gamma}\;{\lambda}2.1661{\mu}m$ and weak He I ${\lambda}2.0587{\mu}m$. Molecular hydrogen lines of 1-0S(1) ${\lambda}2.1218{\mu}m$, 2-1 S(1) ${\lambda}2.2477{\mu}m$, and 1-0 S(0) ${\lambda}2.2227{\mu}m$ was also detected. These emission lines show the structure of an ionized core and excited surface of clouds by far-ultraviolet photons, photodissociation region (PDR). We present three-dimensional maps of emission line distributions through multi slit scanning data and compare these results with the previous study. This presentation shows the physical structure of the star-forming regions and we discuss a PDR model and an evolution of Hubble V complex.

  • PDF

THE CHEMICAL PROPERTIES OF PG QUASARS

  • 신재진;우종학
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.74.2-74.2
    • /
    • 2012
  • Metallicity is an important tracer of star formation in galaxy evolution. Based on the flux ratios of broad emission lines, AGN metallicity has shown a correlation with AGN luminosity. However, it is not clear what physical parameter drives the observed correlation. Using a sample 69 Palomar-Green QSOs at low-z (z<0.5), we determine BLR gas metallicity from emission line flux ratios, i.e., N V1240/C IV1549, (Si IV1398+O IV1402)/C IV1549 and N V1240/He II1640 based on the UV spectra from the HST and IUE archives. We compare BLR gas metallicity with various AGN properties, i.e., black hole mass, AGN luminosity and Eddington ratio, in order to investigate physical connection between metal enrichment and AGN activity. In contrast to high-z QSOs, which show the correlation between metallicity and black hole mass, we find that the metallicity of low-z QSOs correlates with Eddington ratio, but not with black hole mass, suggesting that metallicity enrichment mechanism is different between low-z and high-z.

  • PDF