• Title/Summary/Keyword: hazardous substance

Search Result 212, Processing Time 0.027 seconds

Evaluation of Adequacy of Upper and Lower Tier Qualifying Quantities for the Substance Requiring Preparation for Accidents (사고대비물질 상위 및 하위규정수량의 적정성 평가)

  • Kim, Hyodong;Kim, Haelee;Seo, Cheongmin;Jun, Jinwoo;Park, Kyoshik
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.2
    • /
    • pp.10-17
    • /
    • 2022
  • Currently, in Korea, lower and upper tier qualifying quantities of the 97 substances requiring preparation for accidents have been designated. The information on the submission of chemical accident prevention management plan varies depending on whether the handling volume is above or below the lower or upper qualifying quantity. Because the criteria of the lower and upper qualifying quantities of substance requiring preparation for accidents are not stipulated in the Chemical Substances Control Act, this study attempted to establish a criterion through significance verification. In addition, the study investigated whether these qualifying quantities are related to the Globally Harmonized System of Classification and Labelling of Chemicals (GHS), toxic concentration endpoint, and National Fire Protection Association (NFPA). Finally, by comparing the risk categorization of the GHS, endpoint, and NFPA, it was evaluated whether the circulation-volume-based risk categorization of the substance requiring preparation for accidents that are in the top 13 is appropriate. The qualifying quantities of benzene, toluene, and sulfuric acid needed to be adjusted upward, while those of methyl alcohol and ammonia were adjusted downward from the current qualifying quantities. It is required to establish a quantified criterion that fully reflects the domestic situations in Korea and various indicators such as toxicity, physicochemical properties, and circulation volume for the qualified criterion of hazardous chemical substances. The study is expected to be helpful in establishing an efficient system by systematizing the criterion for qualifying quantity.

Research on Dispersion Prediction Technology and Integrated Monitoring Systems for Hazardous Substances in Industrial Complexes Based on AIoT Utilizing Digital Twin (디지털트윈을 활용한 AIoT 기반 산업단지 유해물질 확산예측 및 통합관제체계 연구)

  • Min Ho Son;Il Ryong Kweon
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.3
    • /
    • pp.484-499
    • /
    • 2024
  • Purpose: Recently, due to the aging of safety facilities in national industrial complexes, there has been an increase in the frequency and scale of safety accidents, highlighting the need for a shift toward a prevention-centered disaster management paradigm and the establishment of a digital safety network. In response, this study aims to provide an information system that supports more rapid and precise decision-making during disasters by utilizing digital twin-based integrated control technology to predict the spread of hazardous substances, trace the origin of accidents, and offer safe evacuation routes. Method: We considered various simulation results, such as surface diffusion, upper-level diffusion, and combined diffusion, based on the actual characteristics of hazardous substances and weather conditions, addressing the limitations of previous studies. Additionally, we designed an integrated management system to minimize the limitations of spatiotemporal monitoring by utilizing an IoT sensor-based backtracking model to predict leakage points of hazardous substances in spatiotemporal blind spots. Results: We selected two pilot companies in the Gumi Industrial Complex and installed IoT sensors. Then, we operated a living lab by establishing an integrated management system that provides services such as prediction of hazardous substance dispersion, traceback, AI-based leakage prediction, and evacuation information guidance, all based on digital twin technology within the industrial complex. Conclusion: Taking into account the limitations of previous research, we used digital twin-based AI analysis to predict hazardous chemical leaks, detect leakage accidents, and forecast three-dimensional compound dispersion and traceback diffusion.

Eco-Friendly Emissive ZnO-Graphene QD for Bluish-White Light-Emitting Diodes

  • Kim, Hong Hee;Son, Dong Ick;Hwang, Do-Kyeong;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.627-627
    • /
    • 2013
  • Recently, most studies concerning inorganic CdSe/ZnS quantum dot (QD)-polymer hybrid LEDs have been concentrated on the structure with multiple layers [1,2]. The QD LEDs used almost CdSe materials for color reproduction such as blue, green and red from the light source until current. However, since Cd is one of six substances banned by the Restriction on Hazardous Substances (RoHS) directive and classified into a hazardous substance for utilization and commercialization as well as for use in life, it was reported that the use of CdSe is not suitable to fabricate a photoelectronic device. In this work, we demonstrate a novel, simple and facile technique for the synthesis of ZnO-graphene quasi-core.shell quantum dots utilizing graphene nanodot in order to overcome Cd material including RoHS materials. Also, We investigate the optical and structural properties of the quantum dots using a number of techniques. In result, At the applied bias 10 V, the device produced bluish-white color of the maximum brightness 1118 cd/$m^2$ with CIE coordinates (0.31, 0.26) at the bias 10 V.

  • PDF

Analysis and Suggestions on Current Chemical Management in Korea (국내 화학물질 관리에 대한 현행 법률 분석과 발전방향)

  • Park, Geun Seong;Kim, Hyun Sub;Jeon, Byeong Han
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.11
    • /
    • pp.650-654
    • /
    • 2017
  • As the amount of chemicals increases, there is a global movement to reorganize the chemical management system. Korea has also reorganized its chemical management system to enact the act on Chemical Control and Registration and Evaluation etc. of chemical substance. However, it is true that there are not enough explanations in domestic workplaces. Therefore, deepening understanding of chemical control act and searched for a complementary point and future development direction. Through the proposed method, chemical control act should be widely adopted and studied both inside and outside the country as a safe chemical management system.

A Study on Intuitive Technique of Risk Assessment for Route of Ships Transporting Hazardous and Noxious Substance

  • Jeong, Min-Gi;Lee, Moon-Jin;Lee, Eun-Bang
    • Journal of Navigation and Port Research
    • /
    • v.42 no.2
    • /
    • pp.97-106
    • /
    • 2018
  • Despite the development of safety measures and improvements in preventive systems technologies, maritime traffic accidents that involve ships carrying hazardous and noxious substances (HNS) continuously occur owing to increased amount of HNS goods transported and the growing number of HNS fleet. To prevent maritime traffic accidents involving ships carrying HNS, this study proposes an intuitive route risk assessment technique using risk contours that can be visually and quantitatively analyzed. The proposed technique offers continuous information based on quantified values. It determines and structures route risk factors classified as absolute danger, absolute factors, and influential factors within the assessment area. The route risk is assessed in accordance with the proposed algorithmic procedures by means of contour maps overlaid on electronic charts for visualization. To verify the effectiveness of the proposed route risk assessment technique, experimental case studies under various conditions were conducted to compare results obtained by the proposed technique to actual route plans used by five representative companies operating the model ship carrying HNS. This technique is beneficial not only for assessing the route risk of ships carrying HNS, but also for identifying better route options such as recommended routes and enhancing navigation safety. Furthermore, this technique can be used to develop optimized route plans for current maritime conditions in addition to future autonomous navigation application.

Evaluation of Physical, Mechanical Properties and Pollutant Emissions of Wood-Magnesium Laminated Board (WML Board) for Interior Finishing Materials

  • PARK, Hee-Jun;JO, Seok-Un
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.86-94
    • /
    • 2020
  • This study serves as basic research for the development of a new wood-based building finishing material that improved the weakness of inorganic materials such as gypsum board and magnesium board widely used as interior finishing materials and brought out the strength of the wood. The results of evaluating the physical and mechanical properties and the environmental effect related to hazardous substance discharge having manufactured a wood-magnesium laminated composite are as follows. The thermal conductivity and thermal resistance of WML board was improved by about 28~109 percent over magnesium board due to the low thermal conductivity of wood. The adhesive strength of WML board showed a similar result to that of plywood as it exceeds 0.7N/㎟, the adhesive standard of wood veneer which is presented by KS F 3101. Bending strength and screw holding strength were more improved by manufacturing WML board than magnesium board. The WML board manufactured in this study satisfied the criteria for emissions of hazardous substances prescribed in the Indoor Air Quality Control Act, and confirmed the possibility of development as a new wood-based composite material that can replace existing inorganic materials.

A Study of the Presence of Carbonic Acid and Other Potentially Hazardous Substances in Cheongsong Mineral Water (청송약수의 탄산과 유해 가능성 물질 존재에 관한 연구)

  • Lee, Sung-Ho
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.1
    • /
    • pp.132-136
    • /
    • 2021
  • The purpose of this study is to measure the levels of eluted and dissolved CO2, and CO, volatile organic substances and radiation composition of Cheongsong mineral water which were collected from November 2019 to July 2020 during the autumn, spring, and summer seasons at collection points located in the upper, middle and lower spring waters. Data of the upper, middle and lower spring waters include the following: the amount of eluted water (average value±standard deviation, mL/min) was 30.07±0.52, 15.03±0.16, 23.73±0.42, and the amount of CO2 gas was 1,000 ppm or more. In addition, there was no detection of CO or total volatile organic substances (TVOC) and the radiation dose was 0.08 to 0.13. μSv/h. A blank test value of 0.08 to 0.10 μSv/h, when compared with the median value, showed a high value of 0.02 μSv/h, and the uranium test results provided by the Cheongsong-gun Office were 0.0118 mg/L (date 2019.06.18) and 0.0091 mg/L (date 2020.06.04.) respectively, which was less than the permission limit of 0.03 mg/L. However, it is believed that further research using more precise devices is needed in order to guarantee the safety and health of the water.

A Study on Anti-Aging Properties of Recycled Leather Using Shaving Scrap by Applying Antioxidant (피혁 폐기물을 재활용한 재생가죽의 내노화특성 연구)

  • Eun Ho Seo;Sung Wook Lim;Yun Seob Lee;Won Joo Kim;Eun Young Park
    • Textile Coloration and Finishing
    • /
    • v.35 no.3
    • /
    • pp.151-158
    • /
    • 2023
  • In this study, we investigated the durability properties of the recycled leather using shaving scrap with antioxidant. Recycled leather sheets were manufactured by mixing shaving scrap and NB latex as a binder. HALS(Hindered Amine Light Stabilizer) and UVA(UV absorbers) were used as antioxidant. Mechanical properties such as hardness, tensile strength, elongation, tear strength and abrasion resistance were measured. Light aging resistance was evaluated using UV lamp and the degree of discoloration of the recycled leather sheets using a gray scale. In addition, to evaluate heat aging and UV aging, the degree of discoloration of the recycled leather sheets over time was measured using colorimeter. Washing fastness was evaluated on the degree of dyeing of recycled leather sheets for six type of multi-fiber woven fabrics (Acetate, Cotton, Nylon-66, Polyester, Acryl, Wool). To determine whether hazardous substances were detected in recycled leather sheets, the contents of arylamine and Cr 6+ were evaluated. As a result, when used in combination with antioxidant, the heat aging and light aging of recycled leather were improved and hazardous substance were not detected.

Analysis of the utilization of existing test data for phase-in substance registration under the Act on the Registration and Evaluation, etc. of Chemical Substances

  • Choi, Bong-In;Kwak, Yeong-Don;Jung, Yu-Mi;Ryu, Byung-Taek;Kim, Chang Gyun
    • Environmental Analysis Health and Toxicology
    • /
    • v.30 no.sup
    • /
    • pp.4.1-4.7
    • /
    • 2015
  • Objectives Approximately 2000 phase-in substances are subject to registration according to the Act on the Registration and Evaluation, etc. of Chemical Substances (K-REACH), and the expected testing cost is 2.06 trillion Korean won assuming all the test data required for registration are acquired. The extent to which these enormous test costs can be reduced depends on the availability of existing data that can be used to meet the requirements of the K-REACH we examined the current availability of test data that can be used for chemical substance registration. Methods We analyzed the possibility of utilizing the existing test data obtained from 16 reference databases for 369 of 518 kinds of phase-in substances subject to registration that were reported in last October 2014. Results The physical and chemical properties were available for 57.1% of substances, whereas data regarding human hazards and environmental hazards were available at considerably lower rates, 8.5% and 11.8%, respectively. Conclusions Physical and chemical properties were available for a fairly high proportion, whereas human hazards and environmental hazards were reported for considerably fewer substances.

Improvement of Information Sharing System for Efficient Response of Chemical Accident (화학사고의 효율적 대응을 위한 정보공유체계 개선 연구)

  • Lee, Taehyung;Yun, Jeonghyeon;Heo, Hwajin;Lee, Yulburm;Yoo, Byungtae
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.54-61
    • /
    • 2018
  • In this study, we developed a system for information sharing and cooperation support system among the accident response organizations to enable prompt and efficient response in responding to chemical accidents. In other words, by applying mobile messenger function, it is proposed to improve the chemical accident response system that provides information necessary for accident response promptly and accurately, and facilitates bi-directional communication between accident response organizations and field responders, thereby enabling efficient and organic response. As a result of comparing the information provision time before and after the chemical accident of chemical accident response information sharing system, the ratio of processing of substance information and chemical air diffusion information within 30 minutes was improved by 8% and 32%, respectively. As a result of this study, applying the chemical accident response information sharing system to the chemical accident response is expected to contribute to the improvement of the system and the ability to cope with the accident more effectively.