• Title/Summary/Keyword: hazard information system

Search Result 444, Processing Time 0.021 seconds

The Prediction of Hazard Area Using Raster Model (Raster 모델을 이용한 재해위험지 예측기법)

  • Kang, In-Joon;Choi, Chul-Ung;Cheong, Chang-Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.2 no.2 s.4
    • /
    • pp.43-53
    • /
    • 1994
  • GSIS(geo-spatial information system), particularly when utilized in hazard management decision, is one of hazard analysis tool. Data of GSIS input from digitizing or scanning of map or aerial photos. This paper focuses upon the hazard prediction in GSIS and RS analysis to assess map, aerialphotos, satellite imagery and soil map. This study found computation of hazard area analysis. the results is formed as raster data model of quadtree. Authors knew more accurate results of overlay. This paper shows building up integrated data base as well as search of hazard area in aerial photographs.

  • PDF

A Study on the Development of Railway Risk Assessment Information Management System (철도 위험도평가 전산시스템(RAIMS)의 설계 및 개발에 관한 연구)

  • Park, Chan-Woo;Kwak, Sang-Log;Park, Joo-Nam;Wang, Jong-Bae
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1059-1064
    • /
    • 2006
  • Risk assessment of a railway system should be periodically conducted managing a large amount of accumulating accident/incident data and scenarios, which generally requires enormous time and efforts. Therefore, special information management system is essential for railway risk assessment, where data needed for decisions on managing the railway safety could be promptly supported. In this study, we develop the framework of a railway risk assessment information management system (RAIMS). The RAIMS is composed of two main modules: 1) hazard data processing module; 2) and risk assessment module. Hazard data could be turned into risk information using these two modules. The RAIMS will be useful in finding hazard conditions, quantitatively assessing the risk, and providing pertinent risk measures, eventually serving to prevent railway accidents and reduce severities of railway accidents.

  • PDF

BIST Design for Hazard controller in Pipeline System (Pipeline 시스템의 Hazard 검출기를 위한 BIST 설계)

  • 이한권;이현룡;장종권
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.27-30
    • /
    • 2003
  • The recent technology developments introduce new difficulties into the test process by the increased complexity of the chip. Most widely used method for testing high complexity and embedded systems is built-in self-test(BIST). In this paper, we describe 5-stage pipeline system as circuit under testing(CUT) and proposed a BIST scheme for the hazard detection unit of the pipeline system. The proposed BIST scheme can generate sequential instruction sets by pseudo-random pattern generator that can detect all hazard issues and compare the expected hazard signals with those of the pipelined system. Although BIST schemes require additional area in the system, it proves to provide a low-cost test solution and significantly reduce the test time.

  • PDF

A Conceptual Design of Spatial and Non-spatial Information for Water Hazard Information Management and Service (수재해 정보관리 및 서비스를 위한 공간, 비공간 정보 자료 개념 설계)

  • Lee, Jeong-Ju;Kim, Dong-Young;Jung, Young-Hun;Hwang, Eui-Ho;Chae, Hyo-Sok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.21-29
    • /
    • 2016
  • This study conducted a basic design of system and interface which provide both of spatial and non-spatial data for water hazard information management. This helps to decide directions of the future integrated water hazard information platform and possible technical examinations of the web-based system for the realization of the prototype. For user friendly system, this study did a survey to investigate the data format, service environment, image processing level and visualization type that users prefer. Also, authorization range was set up by type of the user group. In the water hazard information platform, the data and analysis algorithm were classified by the fields. Furthermore, the platform was consisted with six block systems according to the function and the interface and designed to flexibly mount or modify the additional functions. For a basic design of the data exchange method and protocols, a prototype was constructed by using the spatial information web service technology. The portal service system to visualize and provide spatial data was designed by the WMS/WFS type of OGC standard interface and the FTP/HTTP interface type through open source GIS software for server environment.

Hazard Perspective to Solve Hazard of Safety Critical System (Safety Critical 시스템의 위험성 해결을 위한 Hazard Perspective 정의)

  • Kwon, Jang-Jin;Hong, Jang-Eui
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.135-137
    • /
    • 2012
  • Safety Critical 시스템은 예상치 못한 오류가 발생했을 시 인명, 재산 및 심각한 환경 피해 등이 발생 할 수 있는 임베디드 시스템이다. Safety Critical 시스템에는 많은 위험성들이 잠재적으로 존재하기 때문에 치명적인 사고가 발생할 수 있다. 이러한 문제를 방지하기 위해 시스템에 존재하는 위험성을 분석하는 활동이 중요시 되고 있다. 본 연구에서는 Safety Critical 시스템의 잠재적인 위험성들을 분석하고 이를 아키텍처 설계에 반영함으로써 시스템의 안전성을 향상시키기 위한 Hazard Perspective를 제안한다. 제안하는 Hazard Perspective는 위험성 분석으로 산출된 정보들과 SSR(System Safety Requirement)을 시스템의 안전을 보장하기 위해 제시된 여러 Safety Architectural Tactics와 매핑하여 아키텍처 설계에 반영시킴으로써 시스템의 안전성을 향상시키도록 한다.

Construction of Earthquake Disaster Management System Based on Seismic Performance Evaluation of Architectural Structure (건축물 내진성능평가에 의한 지진재해관리정보체계 구축)

  • Kim, Seong-Sam;Cho, Eun-Rae;Yoon, Jeong-Bae;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.3
    • /
    • pp.59-67
    • /
    • 2007
  • This paper proposes potentialities of constructing the information system for earthquake hazard management which can manage and analyse earthquake risk and hazard systematically. The experimental results as well as architectural structure investment data for seismicity assessment are built in database and connected with GIS for assessing earthquake safety of building in urban area. For earthquake-resistant performance assessment, we collected and classified building structural data according to assessment criteria using building register, architectural map, digital map, and then complemented database with field survey data. We also suggest GIS-based information system can cope with and manage earthquake hazard effectively, as evaluating earthquake risk by performing detailed earthquake-resistant assessment and determining final assessment scores. The assessment should be processed quickly and accurately by integrating the earthquake hazard information management system with modularization of assessment procedure and method in the future.

  • PDF

Web Document Analysis based Personal Information Hazard Classification System (웹 문서 분석 기반 개인정보 위험도 분류 시스템)

  • Lee, Hyoungseon;Lim, Jaedon;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.69-74
    • /
    • 2018
  • Recently, personal information leakage has caused phishing and spam. Previously developed systems focus on preventing personal information leakage. Therefore, there is a problem that the leakage of personal information can not be discriminated if there is already leaked personal information. In this paper, we propose a personal information hazard classification system based on web document analysis that calculates the hazard. The system collects web documents from the Twitter server and checks whether there are any user-entered search terms in the web documents. And we calculate the hazard classification weighting of the personal information leaked in the web documents and confirm the authority of the Twitter account that distributed the personal information. Based on this, the hazard can be derived and the user can be informed of the leakage of personal information of the web document.

Hazard and Operability Method of the LP Mud System (LP Mud System에 대한 위험과 운전분석 방안)

  • Lee, Sang-Mok;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.404-406
    • /
    • 2016
  • Due to the localization process of offshore drilling system, ensuring safety has emerged as an important. Therefore, step by stem safety analysis about each development process of offshore drilling system is becoming compulsory. Hazard and operability analysis is a method that was successfully used for system safety analysis in industries such as chemical plants. Through this hazard and operability analysis study, to conduct step by step safety analysis accorsing to process, the study conducted hazard and operability analysis in Lp mud system, an area of offshore drilling system.

  • PDF

A Study to Propose Closed-form Approximations of Seismic Hazard (지진 재해도의 닫힌 근사식 제안에 관한 연구)

  • Kwag, Shinyoung;Hahm, Daegi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.245-251
    • /
    • 2018
  • In this paper, we address some issues in existing seismic hazard closed-form equations and present a novel seismic hazard equation form to overcome these issues. The presented equation form is based on higher-order polynomials, which can well describe the seismic hazard information with relatively high non-linearity. The accuracy of the proposed form is illustrated not only in the seismic hazard data itself but also in estimating the annual probability of failure (APF) of the structural systems. For this purpose, the information on seismic hazard is used in representative areas of the United States (West : Los Angeles, Central : Memphis and Kansas, East : Charleston). Examples regarding the APF estimation are the analyses of existing platform structure and nuclear power plant problems. As a result of the numerical example analyses, it is confirmed that the higher-order-polynomial-based hazard form presented in this paper could predict the APF values of the two example structure systems as well as the given seismic hazard data relatively accurately compared with the existing closed-form hazard equations. Therefore, in the future, it is expected that we can derive a new improved APF function by combining the proposed hazard formula with the existing fragility equation.