• Title/Summary/Keyword: hazard exposure

Search Result 388, Processing Time 0.033 seconds

Health Risk Assessment by Exposure to Heavy Metals in PM2.5 in Ulsan Industrial Complex Area (울산 산단지역 PM2.5 중 중금속 노출에 의한 건강위해성평가)

  • Ji-Yun Jung;Hye-Won Lee;Si-Hyun Park;Jeong-Il Lee;Dan-Ki Yoon;Cheol-Min Lee
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.2
    • /
    • pp.108-117
    • /
    • 2023
  • Background: When particles are absorbed into the human body, they penetrate deep into the lungs and interact with the tissues of the body. Heavy metals in PM2.5 can cause various diseases. The main source of PM2.5 emissions in South Korea's atmosphere has been surveyed to be places of business. Objectives: The concentration of heavy metals in PM2.5 near the Ulsan Industrial Complex was measured and a health risk assessment was performed for residents near the industrial complex for exposure to heavy metals in PM2.5. Methods: Concentrations of heavy metals in PM2.5 were measured at four measurement sites (Ulsan, Mipo, Onsan, Maegok) near the industrial complexes. Heavy metals were analyzed according to the Air Pollution Monitoring Network Installation and Operation Guidelines presented by the National Institute of Environmental Research. Among them, only five substances (Mn, Ni, As, Cd, Cr6+) were targeted. The risk assessment was conducted on inhalation exposure for five age groups, and the excess cancer risk and hazard quotient were calculated. Results: In the risk assessment of exposure to heavy metals in PM2.5, As, Cd, and Cr6+ exceeded the risk tolerance standard of 10-6 for carcinogenic hazards. The highest hazard levels were observed in Onsan and Mipo industrial complexes. In the case of non-carcinogenic hazards, Mn was identified as exceeding the hazard tolerance of 1, and it showed the highest hazard in the Ulsan Industrial Complex. Conclusions: This study presented a detailed health risk from exposure to heavy metals in PM2.5 by industrial complexes located in Ulsan among five age groups. It is expected to be utilized as the basis for preparing damage control and industrial emission reduction measures against PM2.5 exposure at the Ulsan Industrial Complex.

Study on Health Risk Assessment of Non-carcinogenic Chemicals in Drinking Water (음용수 중 유해 화학 물질에 대한 위해성 평가에 관한 연구 - II. 비발암성 화학 물질을 중심으로 -)

  • Chung, Yong;Shin, Dong-Chun;Kim, Jong-Man;Park, Seong-Eun;Yang, Ji-Yeon;Lee, Ja-Koung;Hwang, Man-Sik;Park, Yeon-Shin
    • Environmental Analysis Health and Toxicology
    • /
    • v.10 no.1_2
    • /
    • pp.37-46
    • /
    • 1995
  • The purpose of this research is to estimate a safe environmental level of human exposure to thresholding-acting toxicants in drinking water and recommend the acceptable levels and management plans for maintaining good quality of drinking water' and protecting health hazard. This research has been funded as a national project for three years from 1992 to 1995. This study(the second year, 1993-1994) was conducted to monitor 39 species of noncarcinogenic chemicals such as volatile organic compounds(VOCs), polynuclear aromatic hydrocarbens(PAHs), pesticides and heavy metals of drinking water at some area in six cities of Korea, and evaluate health risk due to these chemicals through four main steps (hazard identification, exposure assessment, dose-response assessment and risk characterization) of risk assessment in drinking water. In hazard identification, 39 species of non-carcinogenic chemicals were identified by the US EPA classification system. In the step of exposure assessment, sampling of tap water from the public water supply system had been conducted from 1993 to 1994, and 39 chemicals were analyzed. Inclose-response assessment for non-carcinogens, reference doses(RfD) and lifetime health advisories(HAs) of lifetime acceptable levels were calculated. In risk characterization of detected chemicals, the hazard quotients of noncarcinogens were less than one except those of manganese and iron in D city.

  • PDF

Assessment of Semi-Quantitative Health Risks of Exposure to Harmful Chemical Agents in the Context of Carcinogenesis in the Latex Glove Manufacturing Industry

  • Yari, Saeed;Asadi, Ayda Fallah;Varmazyar, Sakineh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.sup3
    • /
    • pp.205-211
    • /
    • 2016
  • Excessive exposure to chemicals in the workplace can cause poisoning and various diseases. Thus, for the protection of labor, it is necessary to examine the exposure of people to chemicals and risks from these materials. The purpose of this study is to evaluate semi-quantitative health risks of exposure to harmful chemical agents in the context of carcinogenesis in a latex glove manufacturing industry. In this cross-sectional study, semi-quantitative risk assessment methods provided by the Department of Occupational Health of Singapore were used and index of LD50, carcinogenesis (ACGIH and IARC) and corrosion capacity were applied to calculate the hazard rate and the biggest index was placed as the basis of risk. To calculate the exposure rate, two exposure index methods and the actual level of exposure were employed. After identifying risks, group H (high) and E (very high) classified as high-risk were considered. Of the total of 271 only 39 (15%) were at a high risk level and 3% were very high (E). These risks only was relevant to 7 materials with only sulfuric acid placed in group E and 6 other materials in group H, including nitric acid (48.3%), chromic acid (6.9%), hydrochloric acid (10.3%), ammonia (3.4%), potassium hydroxide (20.7%) and chlorine (10.3%). Overall, the average hazard rate level was estimated to be 4 and average exposure rate to be 3.5. Health risks identified in this study showed that the manufacturing industry for latex gloves has a high level of risk because of carcinogens, acids and strong alkalisand dangerous drugs. Also according to the average level of risk impact, it is better that the safety design strategy for latex gloves production industry be placed on the agenda.

Association with Combined Occupational Hazards Exposure and Risk of Metabolic Syndrome: A Workers' Health Examination Cohort 2012-2021

  • Dongmug Kang ;Eun-Soo Lee ;Tae-Kyoung Kim;Yoon-Ji Kim ;Seungho Lee ;Woojoo Lee ;Hyunman Sim ;Se-Yeong Kim
    • Safety and Health at Work
    • /
    • v.14 no.3
    • /
    • pp.279-286
    • /
    • 2023
  • Background: This study aimed to evaluate the association between exposure to occupational hazards and the metabolic syndrome. A secondary objective was to analyze the additive and multiplicative effects of exposure to risk factors. Methods: This retrospective cohort was based on 31,615 health examinees at the Pusan National University Yangsan Hospital in Republic of Korea from 2012-2021. Demographic and behavior-related risk factors were treated as confounding factors, whereas three physical factors, 19 organic solvents and aerosols, and 13 metals and dust were considered occupational risk factors. Time-dependent Cox regression analysis was used to calculate hazard ratios. Results: The risk of metabolic syndrome was significantly higher in night shift workers (hazard ratio = 1.45: 95% confidence interval = 1.36-1.54) and workers who were exposed to noise (1.15:1.07-1.24). Exposure to some other risk factors was also significantly associated with a higher risk of metabolic syndrome. They were dimethylformamide, acetonitrile, trichloroethylene, xylene, styrene, toluene, dichloromethane, copper, antimony, lead, copper, iron, welding fume, and manganese. Among the 28 significant pairs, 19 exhibited both positive additive and multiplicative effects. Conclusions: Exposure to single or combined occupational risk factors may increase the risk of developing metabolic syndrome. Working conditions should be monitored and improved to reduce exposure to occupational hazards and prevent the development of the metabolic syndrome.

The Association of Employment Status, Workplace Environment, and Hazard Exposure with Health Outcome in the Adult Korean Population according to KNHANES IV (제 4기 국민건강영양조사 자료를 이용한 근로자들의 근로형태, 작업환경 및 유해요인 노출과 건강검진결과의 관련성)

  • Kim, Sung-Hun;Kim, Nam-Soo;Lee, Chang-Gok;Ham, Jung-Oh;Lee, Byung-Kook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.3
    • /
    • pp.229-242
    • /
    • 2013
  • Objectives: This study was designed to investigate the current status of the association of job-related information such as employment status, workplace environment, and hazard material exposures with health examination outcomes. Methods: The study used data from KNHANES 2007-2009 representing the three years of 2007-2009, which was conducted annually using a rolling sampling design that involved a complex, stratified, multistage, probability-cluster survey of a representative sample of the non-institutionalized civilian population in Korea. The final analytical sample consisted of 17,240 participants. Information on age, education, smoking history and alcohol intake was collected during the health interview. Job related information consisted of employment status, workplace environment, and hazardous material exposure. The selected indices of health examination were blood pressure, fasting glucose, blood cholesterol, HDL, SGOT, SGPT, and BUN. Results: In multiple logistic regression analysis using hypertension and pre-hypertension as dependent variables and job related categories as independent variables after covariate adjustments, the odds of hypertension and pre-hypertension were significantly lower in those with responsibility and power in their job activities. Interestingly, low odds for hypertension were observed among those who reported that their jobs were fast-paced. Conclusions: This study confirmed that some job-related categories in employment status, workplace environment, and hazardous material exposure had an association with health outcome status. It is worthwhile to comment that high responsibility and power in job activities were revealed as one of the important favorable factors to improve health condition of workers.

Job Hazard Analyses for Musculoskeletal Disorder Risk Factors in Pressing Operations of Dry-cleaning Establishments

  • Park, Jung-Keun
    • Safety and Health at Work
    • /
    • v.7 no.4
    • /
    • pp.389-393
    • /
    • 2016
  • Job hazard analyses were conducted to assess exposure to musculoskeletal disorder (MSD) risk factors in seven workers of three dry-cleaning establishments. In accordance with the Washington State Ergonomics Rule, the analyses were performed in two separate steps: (1) observation and checklist approaches were made to identify a "caution zone job" in the seven workers' pressing operations across the three shops; and (2) detailed posture and motion analyses were undertaken to determine a "MSD hazard" in one worker's operation using a video technique. One "caution zone job" was identified and it was the pressing operation job in which five physical risk factors were found in the pressing operations. The detailed analyses confirmed that one "MSD hazard", i.e., awkward posture in shoulders, was prevalent in the pressing operations of the three dry-cleaning facilities. It would be desirable to reduce MSD risk factors including awkward shoulder posture in the dry-cleaning industry.

Biological Hazard of Electromagnetic Field Exposure: A Review (전자기파의 생체 위해성에 관한 소고)

  • Jung, Kyung-Ah;Gye, Myung-Chan
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.4
    • /
    • pp.241-250
    • /
    • 2011
  • The safety of human exposure to an ever-increasing number and diversity of electromagnetic field (EMF) sources both at work and at home has clearly become a public health issue. To date many $in$ $vivo$ and $in$ $vitro$ studies revealed that EMF exposure can alter cellular metabolism, endocrine function, immune activity, reproductive function, and fetal development in animal system. The major parameters found to be altered in cells or individuals following EMF exposure include an increase of free radicals, DNA damage, cancer risk, developmental defect, and reproductive dysfunctions. Epidemiological studies reported EMF can increase life-threatening illnesses such as leukemia, brain cancer, amyotrophic lateral sclerosis, clinical depression, suicide, and Alzheimer's disease has been identified. These effects of EMF exposure differ according to duration of exposure, frequency of waves, and strength (energy) of EMF. In the present review, we briefly introduced the physical properties of EMF and summarized the effect of EMF on human and wildlife animals according to types of EMF, duration of exposure at cellular and organism levels.

Quantitative Microbial Risk Assessment for Clostridium perfringens in Natural and Processed Cheeses

  • Lee, Heeyoung;Lee, Soomin;Kim, Sejeong;Lee, Jeeyeon;Ha, Jimyeong;Yoon, Yohan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1188-1196
    • /
    • 2016
  • This study evaluated the risk of Clostridium perfringens (C. perfringens) foodborne illness from natural and processed cheeses. Microbial risk assessment in this study was conducted according to four steps: hazard identification, hazard characterization, exposure assessment, and risk characterization. The hazard identification of C. perfringens on cheese was identified through literature, and dose response models were utilized for hazard characterization of the pathogen. For exposure assessment, the prevalence of C. perfringens, storage temperatures, storage time, and annual amounts of cheese consumption were surveyed. Eventually, a simulation model was developed using the collected data and the simulation result was used to estimate the probability of C. perfringens foodborne illness by cheese consumption with @RISK. C. perfringens was determined to be low risk on cheese based on hazard identification, and the exponential model ($r=1.82{\times}10^{-11}$) was deemed appropriate for hazard characterization. Annual amounts of natural and processed cheese consumption were $12.40{\pm}19.43g$ and $19.46{\pm}14.39g$, respectively. Since the contamination levels of C. perfringens on natural (0.30 Log CFU/g) and processed cheeses (0.45 Log CFU/g) were below the detection limit, the initial contamination levels of natural and processed cheeses were estimated by beta distribution (${\alpha}1=1$, ${\alpha}2=91$; ${\alpha}1=1$, ${\alpha}2=309$)${\times}$uniform distribution (a = 0, b = 2; a = 0, b = 2.8) to be -2.35 and -2.73 Log CFU/g, respectively. Moreover, no growth of C. perfringens was observed for exposure assessment to simulated conditions of distribution and storage. These data were used for risk characterization by a simulation model, and the mean values of the probability of C. perfringens foodborne illness by cheese consumption per person per day for natural and processed cheeses were $9.57{\times}10^{-14}$ and $3.58{\times}10^{-14}$, respectively. These results indicate that probability of C. perfringens foodborne illness by consumption cheese is low, and it can be used to establish microbial criteria for C. perfringens on natural and processed cheeses.

Exposure Assessment of Biological Agents in Indoor Environments (실내환경에서 생물학적 인자에 대한 노출평가)

  • Park, Ju-Hyeong
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.4
    • /
    • pp.239-248
    • /
    • 2009
  • The Institute of Medicine of the National Academies of Science in the United States concluded in its 2004 report that excessive indoor dampness is a public health hazard and that its prevention should be a public health goal. Water damage in buildings, such as leaks from roofs, walls, or windows, may increase indoor moisture levels. Excessive dampness may promote microbial proliferation in indoor environments, increase occupants' exposure to microbial agents, and eventually produce adverse health effects in building occupants. Epidemiological studies to demonstrate the causal association between exposure to indoor microbial agents and health effects require reliable exposure assessment tools. In this review, I discuss various sampling and analytical methods to assess human exposure to biological agents in indoor environments, their strengths and weaknesses, and recent trends in research and practice in the USA.

Analysis of Working Conditions of Shift Workers by Age: Health Problems, Emotional Hazard Exposures, Work & Life Imbalance, and Satisfaction of Working Conditions (교대 근무자의 연령에 따른 건강 문제, 감정적 위험요인 노출, 일-생활 불균형, 근로환경 만족도 특성 분석)

  • Jeong, Yihun
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.5
    • /
    • pp.62-73
    • /
    • 2022
  • This study investigates the working conditions of shift workers according to age group by analyzing the sixth Korean Working Conditions Survey's data. A total of 1,323 shift workers were extracted from the dataset. Three age groups (A: 20s-30s, B: 40s-50s, C: 60s and above) were statistically compared in terms of health problems, emotional hazard exposure, work-life imbalance, and satisfaction with working conditions. Elderly shift workers (those in their 60s and above) had significantly more severe health problems and work-life imbalance, greater exposure to emotional hazards, and lower satisfaction with working conditions than young shift workers (those in their 20s-50s). The study's findings reveal the characteristics of working conditions for elderly shift workers and would be useful for improving shift workers' quality of life, as well as safety and productivity in the workplace.