• Title/Summary/Keyword: hazard exposure

Search Result 396, Processing Time 0.025 seconds

Potential Protective Effect of Selenium-Enriched Lactobacillus plantarum on Cadmium-Induced Liver Injury in Mice

  • Yanyan Song;Jing Zhang;Yidan Li;Yuxuan Wang;Yingxin Wan
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.6
    • /
    • pp.1328-1339
    • /
    • 2024
  • Cadmium (Cd) is a prevalent environmental contaminant that poses a potential hazard to the health of both humans and animals. In this study, biosynthesized selenium-enriched Lactobacillus plantarum and selenium nanoparticles (SeNPs) were developed and evaluated for their protective effects against Cd-induced hepatic injury in mice through oral administration for 4 weeks. Cadmium exposure resulted in severe impairment of liver function, as evidenced by increased levels of serum markers of liver injury and, oxidative stress and significant damage to liver tissue, and a notable decrease in the diversity of the intestinal microbiota. Oral administration of Se-enriched L. plantarum (LS) reduced cadmium accumulation in the liver by 49.5% and, restored other cadmium-induced damage markers to normal levels. A comparison of the effects with those of L. plantarum (L) and SeNPs isolated from LS revealed that LS could more effectively alleviate hepatic oxidative stress and reduce the intrahepatic inflammatory responses of the liver, further protecting against cadmium-induced liver injury. These findings suggest that the development of LS may be effective at protecting the liver and intestinal tract from cadmium-induced damage.

Radiological hazards assessment associated with granitoid rocks in Egypt

  • Ahmed E. Abdel Gawad;Masoud S. Masoud;Mayeen Uddin Khandaker;Mohamed Y. Hanfi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2239-2246
    • /
    • 2024
  • The present study aimed to assess the radioactive hazards associated with the application of granitoid rocks in building materials. An HPGe spectrometer was used to detect the levels of the radioactive elements uranium-238, thorium-232, and potassium-40 in the granitoid rocks. The results showed that the levels of these elements were lower (38.32 < 33 Bq kg-1), comparable (47.19-45 Bq kg-1) and higher (992.26 ≫> 412 Bq kg-1) than the worldwide limits for 238U, 232Th, and 40K concentration, respectively. The exposure to gamma radiation of granitoid rocks was studied by various radiological hazard variables like the absorbed dose rate (Dair), the outdoor and indoor annual effective dose (AEDout and AEDin), and excess lifetime cancer risk (ELCR). A variety of statistical methods, including Pearson correlation, principal component analysis (PCA), and hierarchical cluster analysis (HCA) was used, to study the relationship between the radioactive elements and the radiological hazards. According to statistical analysis, the main radioactive risk of granitoid rocks is contributed to by the elements uranium-238, thorium-232, and potassium-40. Granitoid rocks can be applied in building materials, but under control to prevent risk to the public.

Under and Over Employment and Working Conditions (과소/과잉노동과 근로환경)

  • Rhee, Kyung Yong;Song, Se Wook;Kim, Young Sun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.4
    • /
    • pp.536-546
    • /
    • 2014
  • Objectives: The major objective of this paper is compare the exposure work hours and experieence of ill health symptoms among under and over employment and matched group. Workers with over employment have more exposed to hazards than that with under employment because that workers with over employment work more than those with ender employment. Methods: This study as heuristics one used the third Korean Working Conditions Survey done by Occupational Safety and Health Research Institute in 2011. The sample size is 50,023 economic active persons. Over and under employment were measured by matching method of preferred and actual work hours. The exposed work hours to hazards were measured according to 13 hazardous factors and the experience of ill health symptoms were scaled by the number of experienced 14 ill health symptoms. To compare the exposure and the symptoms experience were compared by mean difference test with F test. Results: The proportion of over employment in male employees is 32.1% and that in female employees is 29.3% and under employment rate is 11.2% in mae and 13.9% in female employees. There is significant difference of the rate of over and under emplyment among age groups, industrial sectors, occupational groups and the state of employment. The difference of the exposed work hours to hazards among under, over and matched group were statistically significant in all hazards by gender. The exposed work hours to hazards in over employment were more than those in under employment. The number of experienced symptoms in over employment is statistically significantly more than that in under employment. Conclusions: Workers with over employment may be vulnerable group in the criteria of hazard exposure and health status. The results have some implications and limitations because that this study is heuristic one. The mismatch of preferred and actual working hours may be unfavorable work condition that has impact on safety and health of workers. The impact mechanism may be investigated as future study, Because that this study used cross sectional survey data, some causal relationships cannot be evaluated.

Residual Radioactivity Investigation & Radiological Assessment for Self-disposal of Concrete Waste in Nuclear Fuel Processing Facility (콘크리트 폐기물의 자체처분을 위한 잔류방사능 조사 및 피폭선량평가)

  • Seol, Jeung-Gun;Ryu, Jae-Bong;Cho, Suk-Ju;Yoo, Sung-Hyun;Song, Jung-Ho;Baek, Hoon;Kim, Seong-Hwan;Shin, Jin-Seong;Park, Hyun-Kyoun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.2
    • /
    • pp.91-101
    • /
    • 2007
  • In this study, domestic regulatory requirement was investigated for self-disposal of concrete waste from nuclear fuel processing facility. And after self-disposal as landfill or recycling/reuse, the exposure dose was evaluated by RESRAD Ver. 6.3 and RESRAD BUILD Ver.3.3 computing code for radiological assessments of the general public. Derived clearance level by the result of assessments for the exposure dose of the general public is 0.1071Bq/g (3.5% enriched uranium) for landfill and $0.05515Bq/cm^2$ (5% enriched uranium) for recycling/reuse respectively. Also, residual radioactivity of concrete waste after decontamination was investigated in this study. The result of surface activity is $0.01Bq/cm^2\;for\;{\alpha}-emitter$ and the result of radionuclide analysis for taken concrete samples from surface of concrete waste is 0.0297Bq/g for concentration of $^{238}U$, below 2w/o for enrichment of $^{235}U$ and 0.0089Bq/g for artificial contamination of $^{238}U$ respectively. Therefore, radiological hazard of concrete waste by self-disposal as landfill and recycling/reuse is below clearance level to comply with clearance criterion provided for Notice No.2001-30 of the MOST and Korea Atomic Energy Act.

  • PDF

Characteristics of Exposure Distribution to Hazard Factors in Indoor Swimming Pool Activity Areas in Gwangju (수영장 활동공간 내 유해인자 노출특성 연구)

  • Lee, Youn-Goog;Kim, Nan-Hee;Choi, Young-Seop;Kim, Sun-Jung;Park, Ju-Hyun;Kang, Yu-Mi;Bae, Seok-Jin;Seo, Kye-Won;Kim, Jong-Min
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.2
    • /
    • pp.150-158
    • /
    • 2020
  • Objective: This study is designed to measure the concentration of DBPs (disinfection by-products) in pool water and in air and to estimate the carcinogenic potential through the evaluation of inhalation exposure. Methods: The subjects were six indoor swimming pools with many users in Gwangju. Samples of pool water and indoor air were taken every one month from August 2018 to August 2019 and analyzed for eight swimming pool standards. Three-liter air samples were collected and the VOCs were analyzed using GC/MS directly connected to thermal desorption. Results: pH was 6.8-7.5 and the concentration of free residual chlorine in pool water was 0.40-0.96 ?/ℓ. Physicochemical test items such as KMnO4 consumption and heavy metal items such as Aluminum met existing pool hygiene standards. No VOC materials were detected except for the DBPs. The concentration of THMs in the pool water was 11.05-41.77 ㎍/L and the THMs mainly consist of Chloroform (63-97%) and BDCM (3-31%). The concentration of indoor air THMs is 13.24-32.48 ㎍/㎥ and consists of Chloroform. The results of carcinogenic assessment of chloroform in the indoor swimming pool via inhalation exposure were 2.0 to 6.4 times higher than the 'acceptable risk level' suggested by the US EPA. Conclusions: The concentration of THMs in the pool water is 11.05-41.77 ㎍/L, most of which is chloroform. In addition, the concentration of indoor air THMs is 13.24-32.48 ㎍/㎥. The result of carcinogenic assessment of chloroform was 2.0 to 6.4 times higher than the 'acceptable risk level' suggested by the US EPA.

Problems of the Legal System Related to the Regulation of Radiation Safety for Diagnosis (진단용 방사선 안전관련 법령의 법체계상 문제점)

  • Lim, Chang-Seon;Moon, Heung-Ahn
    • The Korean Society of Law and Medicine
    • /
    • v.14 no.2
    • /
    • pp.119-142
    • /
    • 2013
  • It is not easy to regulate the amount of radiation used for the medical purpose as there usually is more good than harm to the patient's health and life caused by the medical exposure to the radiation. However, the rapid increase of the use of diagnostic radiation involves a high possibility of increasing the radiation hazard exposure. Therefore, it is imperative to implement effective regulations in order to secure the safety of diagnostic radiation. The one and only rule we currently have for the diagnostic radiation is "Medicine Act" with only one clause dedicated to regulate the safety management that does not include any rules for the medical radiation. A set of inclusive rules for the whole medical radiation inclusive of diagnostic radiation and therapeutic radiation need to be based on the "Medicine Act" rather than "Nuclear Safety Act" in order to protect the medical professionals, patients and the guardians of patients from the hazards of diagnostic and/or therapeutic radiation that was not used the purpose of medical treatment. If there is an administrative measure to be imposed to secure the safety of diagnostic radiation, it is considered as exertion of governmental authority of administrative agency. There must be clear and realistic legal guidelines for in-fringe on people's interests. The administrative measures for the safety management of the diagnostic radiation must be clearly and specifically based on the law and the detailed standards for the administrative measures must be dele-gated by the presidential decree or departmental ordinance. Accordingly, the restrictions imposed by the administrative measures to the "Safety Inspection Institute of Radiation along with Radiation Exposure Measuring Institutes" should have clear legal basis as well and the detailed standards for the administrative measures should be regulated by the Ministry of Health and Welfare decree instead of the notification by the Director of Korean Centers for Disease Control and Prevention. While securing the safety of radiation on one side, careful review and up-grade on our legal system for the safety management of the diagnostic radiation is required on the other side to guarantee the legality, interest balance and reliability of the administrative measures.

  • PDF

Human Health Risk Assessment of Benzene from Industrial Complexes of Chungcheong and Jeonla Province (충청·전라지역 산업단지 주변지역에서의 벤젠 인체 위해성 평가)

  • Jang, Yong-Chul;Lee, Sungwoo;Shin, YongSeung;Kim, Heekap;Lee, Jonghyun
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.497-507
    • /
    • 2011
  • This research studied human health risk assessment of benzene from industrial complexes of Chungcheong Province (Seosan industrial complex) and Jeonla Province (Iksan industrial complex and Yeosoo industrial complex). The residents near the industrial complexes areas can be often exposed to volatile organic compounds (e.g., benzene, toluene, xylenes) through a number of exposure pathways, including inhalation of the organic pollutant via various environmental matrices (air, water and soil), contaminated water, and soil intake. Benzene is well known to be a common carcinogenic and toxic compound that is produced from industrial and oil refinery complexes. In this study, a number of samples from water, air, and soil were taken from the residential settings and public school zones located near the industrial complex sites. Based on the carcinogenic risk assessment, the risk estimates were slightly above $10{\times}10^{-6}$ at all three industrial sites. According to deterministic risk assessment, inhalation was the most important route. The distribution of benzene in the environment would be dependent on vapor pressure, and the physical property influencing the extent of the potential risks. Non-carcinogenic risk assessment of benzene shows that the values of Hazard Index(HI) were much lower than 1.0 at all industrial complexes. Therefore, benzene was not a cause of concern in terms of non-carcinogenic risk posed to the residents near the sites. When compared to probabilistic risk assessment, the CTE(central tendency exposure) cancer risk values of deterministic risk assessment were close to the mean values predicted by the probabilistic risk assessment. The RME(reasonable maximum exposure) values fell within the range of 95% to 99.9% estimated by the probabilistic risk assessment. Since the values of carcinogenic risk assessment were higher than $10{\times}10^{-6}$, further detailed monitoring and refined risk assessment for benzene may be warranted to estimate more reliable and potential inhalation risks to receptors near the industrial complexes.

A Study on the Development of a Health Risk Assessment Method for the Management of the Health Environment of Residents Living Around Areas Affected by Chemical Accidents (화학사고 주변 지역 거주자의 보건환경 관리를 위한 건강위해성 평가 방법 개발에 관한 연구)

  • Park, Sihyun;Park, Sejung;Park, Taehyun;Yoon, Danki;Jung, Jonghyeon;Gang, Sungkyu;Lee, Dongsoo;Seo, Youngrok;An, Yeonsoon;Lee, Cheolmin
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.1
    • /
    • pp.1-17
    • /
    • 2018
  • Objectives: This research is part of a study to be conducted over five years starting from 2017 by the Ministry of Environment on the development of technologies to evaluate the impact of chemical accidents on the human body. Methods: For this research, a five-stage specific study method was developed. Results: In brief, the developed health risk assessment method can be summarized as follows. First, a health risk assessment system was built based on the guidelines set forth by the USA NRC/NAS. Second, based on the disease manifestation theory, the health risk assessment method was divided into 1) a carcinogenic health risk assessment method focused on all carcinogens except non-genotoxic carcinogens and 2) a non-carcinogenic health risk assessment method focused on noncarcinogens including non-genotoxic carcinogens. Third, the detailed contents of the health risk assessment method were developed in four stages(hazard identification, dose-response assessment, exposure assessment, and risk determination) through theoretical consideration of the assessment of the level of health risk related to chemical exposure. Finally, a health risk assessment methodology, classified into stages to address acute, subacute/subchronic, and chronic conditions was developed after considering the physicochemical behavior of hazardous chemicals upon implementation of countermeasures after a chemical accident. Conclusions: A method to evaluate the health risks related to toxic chemicals generated by chemical accidents was developed. This study was performed with the purpose of developing a mathematical health risk assessment method to evaluate the health effects of exposure to hazardous chemicals upon implementation of emergency countermeasures after chemical accidents.

Health and Economic Burden Attributable to Particulate Matter in South Korea: Considering Spatial Variation in Relative Risk (지역간 상대위험도 변동을 고려한 미세먼지 기인 질병부담 및 사회경제적 비용 추정 연구)

  • Byun, Garam;Choi, Yongsoo;Gil, Junsu;Cha, Junil;Lee, Meehye;Lee, Jong-Tae
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.486-495
    • /
    • 2021
  • Background: Particulate matter (PM) is one of the leading causes of premature death worldwide. Previous studies in South Korea have applied a relative risk calculated from Western populations when estimating the disease burden attributable to PM. However, the relative risk of PM on health outcomes may not be the same across different countries or regions. Objectives: This study aimed to estimate the premature deaths and socioeconomic costs attributable to long-term exposure to PM in South Korea. We considered not only the difference in PM concentration between regions, but also the difference in relative risk. Methods: National monitoring data of PM concentrations was obtained, and missing values were imputed using the AERMOD model and linear regression model. As a surrogate for relative risk, hazard ratios (HRs) of PM for cardiovascular and respiratory mortality were estimated using the National Health Insurance Service-National Sample Cohort. The nation was divided into five areas (metropolitan, central, southern, south-eastern, and Gangwon-do Province regions). The number of PM attributable deaths in 2018 was calculated at the district level. The socioeconomic cost was derived by multiplying the number of deaths and the statistical value of life. Results: The average PM10 concentration for 2014~2018 was 45.2 ㎍/m3. The association between long-term exposure to PM10 and mortality was heterogeneous between areas. When applying area-specific HRs, 23,811 premature deaths from cardiovascular and respiratory disease in 2018 were attributable to PM10 (reference level 20 ㎍/m3). The corresponding socioeconomic cost was about 31 trillion won. These estimated values were higher than that when applying nationwide HRs. Conclusions: This study is the first research to estimate the premature mortality caused by long-term exposure to PM using relative risks derived from the national population. This study will help precisely identify the national and regional health burden attributed to PM and establish the priorities of air quality policy.

Evaluation and Reduction of Microbiological Hazard of Spoon and Spoon Case Carried by Nursery School Children (어린이집 유아 휴대 수저 및 수저집의 미생물학적 위해 분석 및 저감화)

  • Kim, Jung-Beom;Park, Yong-Bae;Kim, Ki-Cheol;Kim, Dae-Hwan;Kang, Suk-Ho;Lim, Young-Sik;Park, Po-Hyun;Yoon, Mi-Hye;Lee, Jong-Bok
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.1
    • /
    • pp.116-122
    • /
    • 2011
  • This study was conducted to investigate the microbiological hazard of spoons and their cases carried by nursery school children and to evaluate the reduction effects of washing methods and ultraviolet (UV) treatments against Escherichia coli on the spoon and spoon case. A total of 78 spoons and their cases were sampled to test about total aerobic bacteria, coliform bacteria, Staphylococcus aureus, Bacillus cereus and Salmonella spp. Total aerobic bacteria were detected over 2.7 log CFU/100 $cm^2$ in 20 out of 36 spoons (55.6%), 9 out of 20 zipper-type spoon cases (45.0%) and 13 out of 22 plastic-type spoon cases (59.1%). Coliform bacteria were also detected in 19 out of 36 spoons (52.8%), 14 out of 20 zipper-type spoon cases (70.0%) and 14 out of 22 plastic-type spoon cases (63.6%). The pathogens tested in this study were not found in all samples except for the zipper-type spoon cases which were contaminated with Staph. aureus (2 samples) and B. cereus (3 samples). The results indicated that the sanitary conditions of spoons and their cases should be improved promptly. To evaluate the reduction effects of washing methods and UV treatments against E. coli, the spoons and their cases were treated at different cleaning times with and without soap, and different UV exposure times, respectively. E. coli with initial cell number of 4 log CFU on the spoons and their cases was not detected when they were cleaned at running water for 30 sec after dish sponging with soap for 30 sec. In UV treatments, E. coli with the same level of washing method was not detected after UV exposure for 15 minute in the spoons and their cases. From the results, the washing and UV treatment should be used to control the microbial contamination of spoons and their cases for more than 1 and 15 minutes, respectively.