• Title/Summary/Keyword: hausdorff distance

Search Result 97, Processing Time 0.02 seconds

Shape-based object recognition using Multiple distance images (다중의 거리영상을 이용한 형태 인식 기법)

  • 신기선;최해철
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.17-20
    • /
    • 2000
  • This paper describes a shape-based object recognition algorithm using multiple distance images. For the images containing dense edge points and noise, previous Hausdorff distance (HD) measures yield a high ms error for object position and many false matchings for recognition. Extended version of HD measure considering edge position and orientation simultaneously is proposed for accurate matching. Multiple distance images are used to calculate proposed matching measure efficiently. Results are presented for visual images and infrared images.

  • PDF

Real-time Moving Object Tracking from a Moving Camera (이동 카메라 영상에서 이동물체의 실시간 추적)

  • Chun, Quan;Lee, Ju-Shin
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.465-470
    • /
    • 2002
  • This paper presents a new model based method for tracking moving object from a moving camera. In the proposed method, binary model is derived from detected object regions and Hausdorff distance between the model and edge image is used as its similarity measure to overcome the target's shape changes. Also, a novel search algorithm and some optimization methods are proposed to enable realtime processing. The experimental results on our test sequences demonstrate the high efficiency and accuracy of our approach.

Road network data matching using the network division technique (네트워크 분할 기법을 이용한 도로 네트워크 데이터 정합)

  • Huh, Yong;Son, Whamin;Lee, Jeabin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.4
    • /
    • pp.285-292
    • /
    • 2013
  • This study proposes a network matching method based on a network division technique. The proposed method generates polygons surrounded by links of the original network dataset, and detects corresponding polygon group pairs using a intersection-based graph clustering. Then corresponding sub-network pairs are obtained from the polygon group pairs. To perform the geometric correction between them, the Iterative Closest Points algorithm is applied to the nodes of each corresponding sub-networks pair. Finally, Hausdorff distance analysis is applied to find link pairs of networks. To assess the feasibility of the algorithm, we apply it to the networks from the KTDB center and commercial CNS company. In the experiments, several Hausdorff distance thresholds from 3m to 18m with 3m intervals are tested and, finally, we can get the F-measure of 0.99 when using the threshold of 15m.

A SYSTEM OF FIRST-ORDER IMPULSIVE FUZZY DIFFERENTIAL EQUATIONS

  • Lan, Heng-You
    • East Asian mathematical journal
    • /
    • v.24 no.1
    • /
    • pp.111-123
    • /
    • 2008
  • In this paper, we introduce a new system of first-order impulsive fuzzy differential equations. By using Banach fixed point theorem, we obtain some new existence and uniqueness theorems of solutions for this system of first-order impulsive fuzzy differential equations in the metric space of normal fuzzy convex sets with distance given by maximum of the Hausdorff distance between level sets.

  • PDF

On C.L.T. and L.I.L. for fuzzy random variables

  • Hwang, Chang-Ha;Hong, Dug-Hun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.2
    • /
    • pp.113-118
    • /
    • 1998
  • In this paper we study central limit theorem(C.L.T.) and law of iterated logarithm (L.I.L.) for fuzzy random variables with respect to Hausdorff distance.

  • PDF

3-D Building Reconstruction from Standard IKONOS Stereo Products in Dense Urban Areas (IKONOS 컬러 입체영상을 이용한 대규모 도심지역의 3차원 건물복원)

  • Lee, Suk Kun;Park, Chung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.535-540
    • /
    • 2006
  • This paper presented an effective strategy to extract the buildings and to reconstruct 3-D buildings using high-resolution multispectral stereo satellite images. Proposed scheme contained three major steps: building enhancement and segmentation using both BDT (Background Discriminant Transformation) and ISODATA algorithm, conjugate building identification using the object matching with Hausdorff distance and color indexing, and 3-D building reconstruction using photogrammetric techniques. IKONOS multispectral stereo images were used to evaluate the scheme. As a result, the BDT technique was verified as an effective tool for enhancing building areas since BDT suppressed the dominance of background to enhance the building as a non-background. In building recognition, color information itself was not enough to identify the conjugate building pairs since most buildings are composed of similar materials such as concrete. When both Hausdorff distance for edge information and color indexing for color information were combined, most segmented buildings in the stereo images were correctly identified. Finally, 3-D building models were successfully generated using the space intersection by the forward RFM (Rational Function Model).

Model Creation Algorithm for Multiple Moving Objects Tracking (다중이동물체 추적을 위한 모델생성 알고리즘)

  • 조남형;김하식;이명길;이주신
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.633-637
    • /
    • 2001
  • In this paper, we proposed model creation algorithm for multiple moving objects tracking. The proposed algorithm is divided that the initial model creation step as moving objects are entered into background image and the model reformation step in the moving objects tracking step. In the initial model creation step, the initial model is created by AND operating division image, divided using difference image and clustering method, and edge image of the current image. In the model reformation step, a new model was reformed in the every frame to adapt appearance change of moving objects using Hausdorff Distance and 2D-Logarithmic searching algorithm. We simulated for driving cart in the road. In the result, model was created over 98% in case of irregular approach direction of cars and tracking objects number.

  • PDF

Co-saliency Detection Based on Superpixel Matching and Cellular Automata

  • Zhang, Zhaofeng;Wu, Zemin;Jiang, Qingzhu;Du, Lin;Hu, Lei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2576-2589
    • /
    • 2017
  • Co-saliency detection is a task of detecting same or similar objects in multi-scene, and has been an important preprocessing step for multi-scene image processing. However existing methods lack efficiency to match similar areas from different images. In addition, they are confined to single image detection without a unified framework to calculate co-saliency. In this paper, we propose a novel model called Superpixel Matching-Cellular Automata (SMCA). We use Hausdorff distance adjacent superpixel sets instead of single superpixel since the feature matching accuracy of single superpixel is poor. We further introduce Cellular Automata to exploit the intrinsic relevance of similar regions through interactions with neighbors in multi-scene. Extensive evaluations show that the SMCA model achieves leading performance compared to state-of-the-art methods on both efficiency and accuracy.

Silhouette-Edge-Based Descriptor for Human Action Representation and Recognition

  • Odoyo, Wilfred O.;Choi, Jae-Ho;Moon, In-Kyu;Cho, Beom-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.2
    • /
    • pp.124-131
    • /
    • 2013
  • Extraction and representation of postures and/or gestures from human activities in videos have been a focus of research in this area of action recognition. With various applications cropping up from different fields, this paper seeks to improve the performance of these action recognition machines by proposing a shape-based silhouette-edge descriptor for the human body. Information entropy, a method to measure the randomness of a sequence of symbols, is used to aid the selection of vital key postures from video frames. Morphological operations are applied to extract and stack edges to uniquely represent different actions shape-wise. To classify an action from a new input video, a Hausdorff distance measure is applied between the gallery representations and the query images formed from the proposed procedure. The method is tested on known public databases for its validation. An effective method of human action annotation and description has been effectively achieved.

Luminance Projection Model for Efficient Video Similarity Measure (효율적인 비디오 유사도 측정을 위한 휘도 투영모델)

  • Kim, Sang-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.2
    • /
    • pp.132-135
    • /
    • 2009
  • The video similarity measure is very important factor to index and to retrieve for video data. In this paper, we propose the luminance projection model to measure the video similarity efficiently. Most algorithms for video indexing have been commonly used histograms, edges, or motion features, whereas in this paper, the proposed algorithm is employed an efficient measure using the luminance projection. To index effectively the video sequences and to decrease the computational complexity, we calculate video similarity using the key frames extracted by the cumulative measure, and compare the set of key frames using the modified Hausdorff distance. Experimental results show that the proposed luminance projection model yields the remarkable accuracy and performance than the conventional algorithm.

  • PDF