• Title/Summary/Keyword: harzburgite

Search Result 12, Processing Time 0.023 seconds

Color Change of Chromian Spinels of Choongnam Serpentinites, Korea (충남지역 사문암내 크롬스피넬의 색변화)

  • Kim Young-Tae;Woo Young-Kyun
    • Journal of the Korean earth science society
    • /
    • v.26 no.3
    • /
    • pp.305-312
    • /
    • 2005
  • Degrees of serpentinization from the original rocks of Choongnam serpentinites such as dunite and harzburgite are well matched with O'Hanley's textural stages of serpentinites (1996). Colors of chromian spinels in serpentinites are brown and/or red in dunites, and red in harzburgite. Also, colors of chromian spinels changed darker from brown and/or red according to the degree of serpentinization and more darker by steatitization because of increasing Fe ions.

Geological Structure and Mineralization in the Vophi Bum Cr Mineralized Zone, NW Myanmar (미얀마 북서부 보피붐 크롬광화대의 지질구조와 광화작용)

  • Ryoo, Chung-Ryul;Heo, Cheol-Ho;Aung, Zaw Linn
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.307-321
    • /
    • 2015
  • The study area, Bophi Vum, Myanmar, is composed of the harzburgite, serpentinite and dunite, those are covered by Quaternary alluvium. The chromite ore bodies are developed within dunite and harzburgite bodies, mainly within dunite bodies. To identify the extension of the chromite ore bodies, we carried out trench surveys in the 5 different sites. The chromite ore bodies have 0.3-1.5 m wide, and several meters of extension, and deformed strongly as a sigmoid and a boudin shapes with dunite and harzburgite bodies by ductile deformation. The ductile deformation have a top-to-the-west shear sense, indicating the existence of a westward thrusting. The NW-SE trending distribution of ore bodies is related to the dextral ductile shearing and/or to the block rotation as a book-shelf structure by dextral strike-slip movement.

Serpentinization of Olivine and Pyroxene in Chungnam Serpentinites, Korea (충남지역 사문암내 감람석과 휘석의 사문석화작용)

  • Kim Young-Tae;Woo Young-Kyun
    • Journal of the Korean earth science society
    • /
    • v.26 no.3
    • /
    • pp.297-304
    • /
    • 2005
  • Serpentinites in Chungnam area are mainly composed of serpentines. Serpentines of olivine origin consist of pseudomorphs of olivines and show mesh textureen closed with magnetites along the boundaries of serpentine crystals. In some serpentinites, serpentinization is occurred in crystal boundaries and/or cracks of olivines and pyroxenes which are relict minerals of dunite and harzburgite. On the process from olivine to serpentine, Mg ions are greatly decreased and Si ions are greatly increased, and $Fe^{2+}\;and\;Fe^{3+}$ ions are a little decreased. But, on the process from pyroxene to serpentine, Si ions are greatly decreased and Mg ions are greatly increased. Magnetites around the serpentine crystals were formed from the iron which had been left out through this serpentinization process of olivine. Serpentinization from the original rocks such as dunite and harzburgite in Chungnam area was occurred by various waters affected after formation of original rock, and particularly by metamorphic water in the metamorphic conditions ranging from green schist facies to granulite facies through amphibolite facies.

Magnetic Data Analysis of the Chromium Mineralized Belt in Bophi Vum area, Northwestern Myanmar (미얀마 북서부 보피붐 크롬광화대의 자력 탐사자료 해석)

  • Park, Gyesoon;Heo, Chul-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.3
    • /
    • pp.147-154
    • /
    • 2014
  • For analyzing the distribution of chromite, magnetic survey was carried out on the chromium mineralized belt in Bophi Vum area, northwestern Myanmar. As a result, the magnetic susceptibility of chromite is lower than those of dunite and harzburgite, which are background rocks of chromite. Also, the locations of low magnetic anomaly zone and low magnetic susceptibility models of 3D magnetic inversion result are spatially well matched with those of chromite occurrences confirmed by the surface geological survey and trench survey. Some of low magnetic effects are expanded to the periphery area of chromite occurrences. Considering the magnetic susceptibility characteristics of various rocks in this area, the expanded low magnetic anomaly zones are estimated as the high potential areas bearing chromite. For confirming the potential area of chromite pointed by coarse magnetic survey, the additional detail exploration need to be carried out in future.

Silica Enrichment in Mantle Xenoliths Trapped in Basalt, Jeju Island: Modal Metasomatic Evidences (제주도 맨틀포획암내의 실리카 부화작용: 모달 교대작용의 증거)

  • Yu, Jae-Eun;Kim, Sun-Woong;Yang, Kyoung-Hee
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.61-75
    • /
    • 2011
  • Mantle-derived xenoliths, corresponding to spinel harzburgite and lherzolite in alkali basalts from Jeju Island, are metasomatized to various extents. They contain distinctive secondary orthopyroxene, forming corona or poikilitic textures. It clearly indicate that this secondary orthopyroxene has been produced at the expense of olivine along the grain boundaries and margins, suggesting silica-enriched metasomatic melt infiltrated through grain boundaries. Based on the geotectonic characteristics of Jeju Island and textural characteristics and major elements composition of mantle xenoliths, it is suggested that the silica-enriched melt/fluid could have derived from the ancient subducted slab, possibly in the mantle wedge, implying that the high $SiO_2$ activity in the lithospheric upper mantle beneath Jeju Island at that time.

A Geochemical Indicator in Exploration for the Kalaymyo Chromitite Deposit, Myanmar (미얀마 깔레이미요 크롬철석광상 탐사의 지구화학적 인자)

  • Park, Jung-Woo;Park, Gyuseung;Heo, Chul-Ho;Kim, Jihyuk
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.423-433
    • /
    • 2017
  • Korea Institute of Geoscience and Mineral Resources and Department of Geological Survey and Mineral Exploration in Myanmar have explored the Kalaymyo chromitite deposit, Myanmar since 2013. It is now necessary to find a geochemical indicator for efficient mineral exploration in the future and building a 3D geological model for this ore deposit. Mantle podiform chromitite is a major type of Cr ore in this region, which is considered to be formed by mantle-melt interaction beneath the mantle-crust boundary of oceanic lithosphere. In this study we measured major element composition of spinels in harzburgite, dunite and chromitite, and examined the hypothesis that spinel Cr#(molar Cr/(Cr+Al)${\times}$100) can be used as a geochemical indicator in exploration for the Kalaymyo chromitite. The results show that there is a clear correlation between spinel Cr# and distribution of chromitite. The spinel Cr# of harzburgite increases with decreasing the distance from the chromitite bodies. The spinel composition is also closely associated with texture and occurrence of spinels. The high Cr# spinels (30-48) are subhedral to euhedral and enclosed by olivine whereas the low Cr# spinels (16-27) are anhedral and commonly associated with pyroxenes. Often the low Cr# spinels show symplectite intergrowths with pyroxenes, indicating their residual nature. These petrological and geochemical results suggest that the high Cr# spinels have resulted from mantle-melt interaction. We suggest that spinel Cr# can be used as a geochemical indicator for Cr ore exploration and as one of critical factors in 3D geological model in the Kalaymyo chromitite deposit.

Petrological Study on the Ultramafic Rocks in Choongnam Area (충남지역 초염기성암체의 암석학적 연구)

  • Woo, Young-Kyun;Suh, Man-Cheol
    • Journal of the Korean earth science society
    • /
    • v.21 no.3
    • /
    • pp.323-336
    • /
    • 2000
  • Ultramafic rocks in Choongnam area are mainly serpenitinites which are parent rock of talc and asbestos ore deposits. About 10 $^{\circ}$ NNE-trending parallel serpentinites masses occur as discontineous isolated lenticular intrusive bodies in Precambrian gneiss complex between Hongseong-Kwangcheon line and Onyang-Cheongyang line. The sizes of serpentinites vary from several centimeters to 1 kilometer in width and from several meters to 5 kilometers in length. The serpentinites show high SiO$_2$(39.99wt.% in average), MgO(38.46wt % in average), Cr(>1011ppm), Ni(>1660ppm), and Co(>80ppm). Most serpentinites contain serpentine more than 50%. Some serpentines contain original minerals such as olivine, pyroxene and chromite. Also, serpentinites body may contain a little serpentinized peridotite, and some talc and asbestos ore deposits. The original rocks of the serpentinites interpreted as Alpine type ultramafic rocks, and dunite and/or harzburgite which were originated from slightly depleted upper mantle(30${\sim}$40km deep), and emplaced in the crust through the large fault zones. It seems that main serpentinization from the original rocks was occurred during greenschist and/or amphibolite facies regional metamorphism in Choongnam area.

  • PDF

Petrography and geochemistry of the Devonian ultramafic lamprophyre at Sokli in the northeastern Baltic Shield (Finland) (북동 Baltic Shield (핀란드) Sokli 지역의 데본기 초염기성 lamprophyre의 암석학 및 지구화학)

  • Lee, Mi-Jung;Lee, Jong-Ik;Jaques Moutte;Kim, Yeadong
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.170-183
    • /
    • 2003
  • The Sokli complex in the northeastern Baltic Shield (Finland) forms a part of the extensive Devonian Kola Alkaline Province. The complex contains ultramafic lamprophyres occurring as dikes of millimetric to metric thickness. The Sokli ultramafic lamprophyres have petrographical and geochemical affinities with aillikite. High concentrations of Cr and Ni with low Al$_2$O$_3$ content of the Sokli aillikites indicate a strongly depleted harzburgitic source. However, compared to the kimberlites, the lower Cr and Ni contents and mg-number with weaker HREE depletion of the Sokli aillilkites imply a smaller proportion of garnet in the source and thus suggest a shallower melting depth of the source. In order to account for high concentrations of all incompatible elements and LREEs, with high volatile content (especially CO$_2$), an additional enriched material is thought to have been incorporated into the Sokli aillikite source. An anomalous enrichment of K in the Sokli aillikites, compared to nearby ultrapotassic rocks and world-wide ultramafic lamprophyres, indicate a presence of K-rich phase (probably phlogopite) in the source mantle.

Composition and Evolution of Lithosphere Beneath the Jeju Island Region (I): A Review (제주도 암석권의 성분과 진화(I): 리뷰)

  • Yang, Kyounghee
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.261-281
    • /
    • 2016
  • Our knowledge of the lithosphere beneath the Korean Peninsula has been improved through petrologic and geochemical studies of upper mantle xenoliths hosted by Quaternary intraplate alkali basalts from Jeju Island. The xenoliths are mostly spinel lherzolites, accompanied by subordinate harzburgite and pyroxenites. The mantle xenoliths represent residual mantle material showing textural and geochemical evidence for at least a three-stage evolution, fractional partial melting, recrystallization, and metasomatism. Their composition primarily controlled by early fractional melt extraction and porphyroclastic and mylonitic fabrics formed in a shear-dominated environment, which was subsequently modified by residual slab-derived fluids (or melts). Modal metasomatic products occur as both anhydrous phase(orthopyroxene) and hydrous phase (phlogopite). Late-stage orthopyroxene is more common than phlogopite. However, chemical equilibrium is evident between the primary and secondary orthopyroxene, implying that the duration of post-metasomatic high temperatures enabled complete resetting/reequilibration of the mineral compositions. The metasomatic enrichment pre-dates the host Jeju Quaternary magmatism, and a genetic relationship with the host magmas is considered unlikely. Following enrichment in the peridotite protolith in the mantle wedge, the upper mantle beneath proto-Jeju Island was transformed from a subarc environment to an intraplate environment. The Jeju peridotites, representing old subarc fragments, were subsequently transported to the surface, incorporated into ascending Quaternary intraplate alkali basalt. The result of this study implies that long term material transfer in the transformation of geotectonic setting from a subarc to intraplate may have played a significant role in the evolution of lithospheric mantle, resulting in the enriched mantle domains, such as EM I or EM II in the lithospheric mantle beneath East Asia.