• Title/Summary/Keyword: harmonics spectrum

Search Result 101, Processing Time 0.02 seconds

Intelligent Diagnosis of Broken Bars in Induction Motors Based on New Features in Vibration Spectrum

  • Sadoughi, Alireza;Ebrahimi, Mohammad;Moallem, Mehdi;Sadri, Saeid
    • Journal of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.228-238
    • /
    • 2008
  • Many induction motor broken bar diagnosis methods are based on evaluating special components in machine signals spectrums. Current, power, flux, etc are among these signals. Frequencies related to a broken rotor fault are slip dependent, therefore, correct diagnosis of fault - especially when obtrusive frequency components are present - depends on accurate determination of motor velocity and slip. The traditional methods typically require several sensors that should be pre-installed in some cases. This paper presents a diagnosis method based on only a vibration sensor. Motor velocity oscillation due to a broken rotor causes frequency components at twice slip frequency difference around speed frequency in vibration spectrum. Speed frequency and its harmonics as well as twice supply frequency, can easily and accurately be found in a vibration spectrum, therefore th motor slip can be computed. Now components related to rotor fault can be found. It is shown that a trained neural network - as a substitute for an expert person - can easily categorize the existence and the severity of a fault according to the features extracted from the presented method. This method requires no information about th motor internal and has been able to diagnose correctly in all the laboratory tests.

Spectrum analysis of acoustic Barkhausen noise on neutron irradiated material

  • Sim Cheul-Muu;Park Seung-Sik;Park Duck-Gum;Lee Chang-Hee
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.231-234
    • /
    • 2000
  • In relation to a non-destructive evaluation of irradiation damage of micro-structure of interstitial, void and dislocation, the changes in the hysteresis loop and Barkhausen noise amplitude and the harmonics frequency due to neutron irradiation were measured and evaluated. The Mn-Mo-Ni low alloy steel of reactor pressure vessel was irradiated to a neutron fluence of $2.3\times10^{19}n/cm^2$ $(E\ge1MeV)$ at $288^{\circ}C.$The saturation magnetization of neutron irradiated metal did not change. Neutron irradiation caused the coercivity to increase, whereas susceptibility to decrease. The amplitude of Barkhausen noise parameters associated with the domain wall motion were decreased by neutron irradiation. The spectrum of Barkhausen noise was analyzed with an applied frequency of 4Hz and 8Hz, and a sampling time of 50 $\mu$ sec and 20 $\mu$ sec. The harmonic frequency of Joule effect shows 4Hz, 8Hz, 12Hz and 16Hz reflected from an unirradiated specimen. On the contrary, the harmonic frequency disappeared for the irradiated specimen. Harmonic frequency of induced voltage of sinusoidal magnetic field And Spectrum of Barkhausen noise on material is determined.

  • PDF

Diagnosis Technique of Surface Aging according to Various Environment Condition for Silicon Polymer Insulator (여러환경조건에 의한 Silicon애자의 표면열화 진단기술)

  • Park, Jae-Jun;Jung, Myeong-Yeon;Lee, Seung-Wook;Kim, Jeong-Boo;Song, Young-Chul;Kim, Hee-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.76-81
    • /
    • 2004
  • This paper presents the results of spectral analysis of leakage current waveforms on contaminated insulators under various fog and environment conditions(salt fog, clean fog, rain) The larger the leakage current during 200ms, the higer the power spectrum at 60Hz. For almost equal maximum current during 200ms, however, the spectrum at 60hz and the odd order harmonics increase emphatically when discharges occur continuously for several half-waves. If contaminated insulators suffers from high salt-density fog, the leakage current occurs with high crest value intermittently, results in the low spectrum. Analysis of leakage current data showed that this electrical activity was characterized by transient arcing behavior contaminants are deposited on the insulator surface during salt fog tests. This provides a path for the leakage current to flow along the surface of the insulator. It is important to have an indication of the pollution accumulation in order to evulate the test performance of a particular insulator. If the drop in surface resistivity is severe enough, then the leakage current may escalate into s service interrupting flashover that degrade power quality.

  • PDF

A New Space Vector Random PWM Scheme for Induction Motor Drives

  • Kim Hoe-Geun;Na Seok-Hwan;Lim Young-Cheol;Jung Young-Gook
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.160-168
    • /
    • 2001
  • The RPWM (Random· Pulse Width Modulation) is a switching technique to spread the voltage and current harmonics over a wide frequency area. By using randomly changing switching frequency of the inverter, the power spectrum of the electromagnetic acoustic noise can be spread to the wide-band area. The wide­band noise is much more comfortable and less annoying than the narrow-band one. So, the RPWM has been attracting interest as an excellent method for the reduction of acoustic noise on the inverter drive system. In this paper a new RPPWM (Random Position Space Vector PWM) is proposed and implemented. Each of three phase pulses is located randomly in each switching interval. Along with the randomization of PWM pulses, the space vector modulation is also executed in the C167 micro-controller. The experimental results show that the voltage and current harmonics are spread to a wide band area and that the audible switching noise is reduced by the proposed RPPWM method.

  • PDF

Evolutionary PSR Estimation Algorithm for Feature Extraction of Sonar Target (소나 표적의 특징정보추출을 위한 진화적 PSR 추정 알고리즘)

  • Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.632-637
    • /
    • 2008
  • In real system application, the propeller shaft rate (PSR) estimation algorithm for the feature extraction of the sonar target operates with the following problems: it requires both accurate and efficient the fundamental finding method because it is essential and difficult to distinguish harmonic family composed of the fundamental and its harmonics from the multiple spectral lines in the frequency spectrum-based sonar target classification, and further, it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an evolutionary PSR estimation algorithm using an expert knowledge and the evolution strategy, is proposed. To verify the performance of the proposed algorithm, a sonar target PSR estimation is performed. Simulation results show that the proposed algorithm effectively solves the problems in the realtime system application.

The Analysis of Acoustic Emission Spectra in a 36 kHz Sonoreactor (36kHz 초음파 반응기에서의 원주파수 및 파생주파수의 음압 분포 분석)

  • Son, Younggyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.128-134
    • /
    • 2016
  • Acoustic emission spectra was analyzed to investigate the distribution of sound pressure in a 36 kHz sonoreactor. The sound pressure of fundamental frequency (f: 36 kHz), harmonics (2f: 72 kHz, 3f: 108 kHz, 4f: 144 kHz, 5f: 180 kHz, 6f: 216 kHz), and subharmonics (1.5f: 54 kHz, 2.5f: 90 kHz, 3.5f: 126 kHz, 4.5f: 162 kHz, 5.5f: 198 kHz, 6.5f; 234 kHz) was measured at every 5 cm from the ultrasonic transducer using a hydrophone and a spectrum analyzer. It was revealed that the input power of ultrasound, the application of mechanical mixing, and the concentration of SDS affected the sound pressure distributions of the fundamental frequency and total detected frequencies frequencies significantly. Moreover a linear relationship was found between the average total sound pressure and the degree of sonochemical oxidation while there was no significant linear relationship between the average sound pressure of fundamental frequency and the degree of sonochemical oxidation.

Reduction of Audible Switching Noise in Induction Motor Drives Using Random Position PWM (Random Position PWM을 이용한 유도전동기의 가청 스위칭 소음 저감)

  • 나석환;임영철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.287-297
    • /
    • 1998
  • RPWM(Random Pulse Width Modulation) is a switching technique to spread the voltage and current harmonics on wide frequency area. Using randomly changed switching frequency of the inverter, the power spectrum of the electromagnetic acoustic noise can be spread into the wide-band area. And the wide-band noise is much more comfortable and less annoying than the narrow-band one. So RPWM have been attracting an interest as an excellent reduction method of acoustic noise on the inverter drive system. In this paper a new RPPWM(Random Position PWM) is proposed and implemented. Each of three pulses is located randomly in each switching intervals. Along with the randomization of PWM pulses, the space vector modulation is processed on the C167 microcontroller also. The experimental results show that the voltage and current harmonics were spread into wide band area and that the audible switching noise was reduced by proposed RPPWM method.

  • PDF

A Study on the Noise Reduction of the Engine Cooing Fan of a Express Bus by Modification of Design Parameters (설계 파라미터 변경에 의한 고속 버스용 엔진 냉각 홴의 저소음화 연구)

  • 이유엽;조용구;이충휘;오재응
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.258-265
    • /
    • 2003
  • This paper suggests the noise reduction method of the engine cooling fan. The fan noise contribution to the OASPL of engine room was estimated and the noise source was identified for the rotating fan by sound intensity method. And the program for Predicting the noise spectrum of axial flow fan was also developed. The radiated acoustic pressure is expressed in terms of discrete frequency noise Peaks at BPF and its harmonics and the line spectrum at the broad band by the proposed noise generation mechanisms. In this Paper, it Is shown that the comparison of the measured and calculated noise spectra of fan validates the noise predicting program. And this paper presents the characteristics of the fan noise in order to modify the design parameters. Accordingly, the design parameters were determined for the noise reduction of the fan.

Design of Low Noise Engine Cooling Fan for Automobile using DACE Model (전산실험모형을 이용한 자동차 엔진 냉각홴의 저소음 설계)

  • Sim, Hyoun-Jin;Park, Sang-Gul;Joe, Yong-Goo;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.509-515
    • /
    • 2009
  • This paper proposes an optimal design scheme to reduce the noise of the engine cooling fan by adapting Kriging with two meta-heuristic techniques. An engineering model has been developed for the prediction of the noise spectrum of the engine cooling fan. The noise of the fan is expressed as the discrete frequency noise peaks at the BPF and its harmonics and line spectrum at the broad band by noise generation mechanisms. The object of this paper is to find the optimal design for noise reduction of the engine cooling fan. We firstly show a comparison of the measured and calculated noise spectra of the fan for the validation of the noise prediction program. Orthogonal array is applied as design of experiments because it is suitable for Kriging. With these simulated data, we can estimate a correlation parameter of Kriging by solving the nonlinear problem with genetic algorithm and find an optimal level for the noise reduction of the cooling fan by optimizing Kriging estimates with simulated annealing. We notice that this optimal design scheme gives noticeable results. Therefore, an optimal design for the cooling fan is proposed by reducing the noise of its system.

Design of Low Noise Engine Cooling Fan for Automobile using DACE Model (전산실험모형을 이용한 자동차 엔진 냉각팬의 저소음 설계)

  • Sim, Hyoun-Jin;Lee, Hae-Jin;Lee, You-Yub;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1307-1312
    • /
    • 2007
  • This paper proposes an optimal design scheme to reduce the noise of the engine cooling fan by adapting Kriging with two meta-heuristic techniques. An engineering model has been developed for the prediction of the noise spectrum of the engine cooling fan. The noise of the fan is expressed as the discrete frequency noise peaks at the BPF and its harmonics and line spectrum at the broad band by noise generation mechanisms. The object of this paper is to find the Optimal Design for Noise Reduction of the Engine Cooling Fan. We firstly show a comparison of the measured and calculated noise spectra of the fan for the validation of the noise prediction program. Orthogonal array is applied as design of experiments because it is suitable for Kriging. With these simulated data, we can estimate a correlation parameter of Kriging by solving the nonlinear problem with genetic algorithm and find an optimal level for the noise reduction of the cooling fan by optimizing Kriging estimates with simulated annealing. We notice that this optimal design scheme gives noticeable results. Therefore, an optimal design for the cooling fan is proposed by reducing the noise of its system.

  • PDF