• Title/Summary/Keyword: harmonic oscillator

Search Result 175, Processing Time 0.019 seconds

Natural Frequency of 2-Dimensional Cylinders in Heaving; Frequency-Domain Analysis (상하동요하는 2차원 주상체의 고유진동수; 주파수 영역 해석)

  • Song, Je-Ha;Lee, Seung-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • Following the previous works on the natural frequency of heaving circular cylinder, i.e. Lee and Lee (2013) and Kim and Lee (2013), an investigation of the same spirit on the 2-dimensional cylinder of Lewis form has been conducted. As before, the natural frequency is defined as that corresponding to the local maximum of the MCFR (Modulus of Complex Frequency Response), which is given by the equation of motion in the frequency domain analysis. Hydrodynamic coefficients were found by using the Ursell-Tasai method, and numerical results for them were obtained up to much higher frequencies than before, for which the method was known as numerically unstable in the past. For a wide range of H, the beam-draft ratio, and ${\sigma}$, the sectional area coefficient, including their practical ranges for a ship, results for the natural frequency were computed and presented in this work. Two approximate values for the natural frequency, one proposed by Lee (2008) and another one by the damped harmonic oscillator, were also compared with the current results, and for most cases it was observed that the current result is between the two values. Our numerical results showed that the values of the local maximum of MCFR as well as the natural frequencye increase as ${\sigma}$ increases while H decreases. At present, extension of the present finding to the 3-dimensional ship via the approximate theory like the strip method looks promising.

Direct Non-stepwise Multiple Quantum Excitations in Translation-Vibration Energy Transfer (竝進-振動에너지 變換에 있어서의 多量子 直接 振動 勵起)

  • Yoo Hang Kim;Hyung Kyu Shin
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.2
    • /
    • pp.97-110
    • /
    • 1976
  • Effects of direct multiple quantum excitations in vibrational energy transfer were investigated. Vibrational transition probabilities for 0${\rightarrow}$2, 0${\rightarrow}$3, and 0${\rightarrow}$4 excitations were explicitly formulated including both direct 0→n excitations and stepwise single quantum processes. For the formulation the perturbing force was derived from the exponential potential including terms up to fourth order in the vibrational amplitude. The head-on collinear collision model between a harmonic oscillator and an incident particle was employed, and the formulation was based on the semiclassical approximation. Numerical results were obtained for five different collision systems (Ar${\cdots}$O-N, He${\cdots}$H-H, He${\cdots}$H-Cl, 5${\cdots}$1-2, 2${\cdots}$12-12). Comparison between the present results and those obtained using the linearized interaction potential showed that the overall effect of including the direct multiple quantum transition is to decrease the probabilities at low collision energies and to increase them at high energies. The present results were found to be significantly different from those obtained using the linearized potential for collision systems He${\cdots}$H-H, He${\cdots}$H-Cl, and 5${\cdots}$1-2. For systems Ar${\cdots}$O-N and 2${\cdots}$12-12 the differences were negligible.

  • PDF

A Compact 20 W Block Up-Converter for C-Band Satellite Communication (C-대역 위성 통신용 20 W급 주파수 상향 변환기의 소형화)

  • Jang, Byung-Jun;Moon, Jun-Ho;Jang, Jin-Man
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.4
    • /
    • pp.352-361
    • /
    • 2010
  • In this paper, a compact 20 W block-up-converter for C-band satellite communication is designed and implemented. The designed block up-converter consists of an intermediate frequency circuit, a mixer and local oscillator, a driver amplifier, a solid-state power amplifier, waveguide circuits, and a power supply module. To reduce the size of the block-up-converter, all circuits are assembled within an housing, so its dimension is just $21{\times}14{\times}11cm^3$. Especially, the waveguide filter and microstirp-to-waveguide transition are easily implemented using an housing. Also, to meet spurious and harmonics specification, various compact microstrip filters including an elliptic filter are integrated. Measurement results show that the developed block up-converter has good electrical performances: the output power of 43.7 dBm, the minimum gain of 65 dB, the gain flatness of ${\pm}1.84$, the IMD3 of -35 dBc, and the harmonic level of -105 dBc.

A 2.4-GHz Low-Power Direct-Conversion Transmitter Based on Current-Mode Operation (전류 모드 동작에 기반한 2.4GHz 저전력 직접 변환 송신기)

  • Choi, Joon-Woo;Lee, Hyung-Su;Choi, Chi-Hoon;Park, Sung-Kyung;Nam, Il-Ku
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.12
    • /
    • pp.91-96
    • /
    • 2011
  • In this paper, a low-power direct-conversion transmitter based on current-mode operation, which satisfies the IEEE 802.15.4 standard, is proposed and implemented in a $0.13{\mu}m$ CMOS technology. The proposed transmitter consists of DACs, LPFs, variable gain I/Q up-conversion mixer, a divide-by-two circuit with LO buffer, and a drive amplifier. By combining DAC, LPF, and variable gain I/Q up-conversion mixer with a simple current mirror configuration, the transmitter's power consumption is reduced and its linearity is improved. The drive amplifier is a cascode amplifier with gain controls and the 2.4GHz I/Q differential LO signals are generated by a divide-by-two current-mode-logic (CML) circuit with an external 4.8GHz input signal. The implemented transmitter has 30dB of gain control range, 0dBm of maximum transmit output power, 33dBc of local oscillator leakage, and 40dBc of the transmit third harmonic component. The transmitter dissipates 10.2mW from a 1.2V supply and the die area of the transmitter is $1.76mm{\times}1.26mm$.

A Microwave Push-Push VCO with Enhanced Power Efficiency in GaInP/GaAs HBT Technology (향상된 전력효율을 갖는 GaInP/GaAs HBT 마이크로파 푸쉬-푸쉬 전압조정발진기)

  • Kim, Jong-Sik;Moon, Yeon-Guk;Won, Kwang-Ho;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.9
    • /
    • pp.71-80
    • /
    • 2007
  • This paper presents a new push-push VCO technique that extracts a second harmonic output signal from a capacitive commonnode in a negativegm oscillator topology. The generation of the $2^{nd}$ harmonics is accounted for by the nonlinear current-voltage characteristic of the emitter-base junction diode causing; 1) significant voltage clipping and 2) different rising and falling time during the switching operation of core transistors. Comparative investigations show the technique is more power efficient in the high-frequency region that a conventional push-push technique using an emitter common node. Prototype 12GHz and 17GHz MMIC VCO were realized in GaInP/GaAs HBT technology. They have shown nominal output power of -4.3dBm and -5dBm, phase noise of -108 dBc/Hz and -110.4 dBc/Hz at 1MHz offset, respectively. The phase noise results are also equivalent to a VCO figure-of-merit of -175.8 dBc/Hz and -184.3 dBc/Hz, while dissipate 25.68mW(10.7mA/2.4V) and 13.14mW(4.38mA/3.0V), respectively.