• Title/Summary/Keyword: harmonic load

Search Result 688, Processing Time 0.02 seconds

Dynamic Buckling Characteristics of Arch Structures Considering Geometric Nonlinearity (기하학적 비선형을 고려한 정현형 아치 구조물의 동적 좌굴 특성)

  • 윤태영;김승덕
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.492-497
    • /
    • 2003
  • The dynamic instability for snapping phenomena has been studied by many researches. There is few paper which deal with the dynamic buckling under the load with periodic characteristics, and the behavior under periodic excitation is expected the different behavior against STEP excitation. We investigate the fundamental mechanisms of the dynamic instability when the sinusoidal shaped arch structures subjected to sinusoidal distributed excitation with pin-ends. In this study, the dynamic direct snapping of shallow arches is investigated under not only STEP load excitation but also sinusoidal harmonic excitations, applied in the up-and-down direction. The dynamic nonlinear responses are obtained by the numerical integration of the geometrically nonlinear equations of motion, and examined by the Fourier spectral analysis in order to get the frequency-dependent characteristics of the dynamic instability for various load levels.

  • PDF

Modal analysis of viscoelastic nanorods under an axially harmonic load

  • Akbas, Seref D.
    • Advances in nano research
    • /
    • v.8 no.4
    • /
    • pp.277-282
    • /
    • 2020
  • Axially damped forced vibration responses of viscoelastic nanorods are investigated within the frame of the modal analysis. The nonlocal elasticity theory is used in the constitutive relation of the nanorod with the Kelvin-Voigt viscoelastic model. In the forced vibration problem, a cantilever nanorod subjected to a harmonic load at the free end of the nanorod is considered in the numerical examples. By using the modal technique, the modal expressions of the viscoelastic nanorods are presented and solved exactly in the nonlocal elasticity theory. In the numerical results, the effects of the nonlocal parameter, damping coefficient, geometry and dynamic load parameters on the dynamic responses of the viscoelastic nanobem are presented and discussed. In addition, the difference between the nonlocal theory and classical theory is investigated for the damped forced vibration problem.

Analysis on the Harmonic Characteristics of Nonlinear Load Operated by Unbalance Voltage (불평형 전압으로 운전하는 비선형 부하의 고조파 특성 분석)

  • 김종겸;이은웅;이동주
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.10
    • /
    • pp.491-500
    • /
    • 2003
  • Most of the loads in industrial power distribution systems are balanced and connected to three wires power systems. However, in the user power distribution systems, most of the loads are single & three phase and unbalanced, generating a large amount of non-characteristic harmonics. With the advent of power electronics and proliferation of non-linear loads in industrial power applications, power harmonics and their effects on power quality are a topic of concern. Harmonics by the unbalance voltage and non-linear loads, cause the increase of machine loss and heating. In order to allow current harmonic compensation, a filter must be installed. This paper describes the performance of passive filter under the voltage unbalance and non-linear load.

Capacity Requirement Estimation of Shunt Active Power Filter for Thyristor Converter Load (싸이리스터 컨버터부하에 적용되는 병렬형 능동필터의 적정용량산정)

  • Park, No-Jung;Jeong, Seung-Gi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.12
    • /
    • pp.715-726
    • /
    • 1999
  • This paper estimates the capacity of shunt type active power filters(APF) for harmonic/reactive power compensation with a thyristor converter load. The base capacity requirement of APF is defined for idealized converter load current waveform and the effect of commutation overlap on the APF capacity is examined. The APF capacity required for reactive power compensation in addition to the harmonic elimination is estimated to give maximum achievable power factor for various operating condition of the partially-loaded thyristor converter. The method of current limit of APF is introduced, and it is shown that the APF capacity can be considerably reduced by deliberately limiting the peak current while maintaining the filtering performance to meet the level std 519 regulation.

  • PDF

A Study on the Data Aquisition System for Power Quality Analysis of Load Equipment (부하설비의 전력품질 분석을 위한 데이터 획득시스템에 관한 연구)

  • Yu, Jae-Geun;Lee, Sang-Ik;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.92-94
    • /
    • 2007
  • In order to analyze voltage, current, electrical power, harmonics and so on of electrical load equipments, electrical power analysis by real measurement rather than mathematical modeling is necessary, and plan of countermeasure for efficient management, energy frugality and accident prevention of electrical equipments using it is possible. Especially, electrical power analysis by real measurement is indispensable in order to consider countermove of harmonic occurred by nonlinear load. So, in this paper, we developed DSP(Digital Signal Processor) based low price date aquisition system, and verified it's ability by performing measurement and analysis of electrical power and harmonic in the real power system.

  • PDF

Advanced Repetitive Controller to Improve the Voltage Characteristics of Distributed Generation with Nonlinear Loads

  • Trinh, Quoc-Nam;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.409-418
    • /
    • 2013
  • This paper presents an enhanced control strategy which consists of a proportional-integral controller and a repetitive controller (RC) for improving the voltage performance of distributed generation (DG) under nonlinear load conditions. The proposed voltage controller is able to maintain a sinusoidal voltage at the point of common coupling (PCC) of the DG regardless of the harmonic voltage drop in the system impedance due to nonlinear load currents. In addition, by employing the delay time of the RC at one-sixth of the fundamental period, the proposed RC can overcome the slow response drawback of the traditional PI-RC. The proposed control strategy is analyzed and the design of the RC is presented in detail. The feasibility of the proposed control strategy is verified through simulation and experimental results.

Analysis for Electrical Stress of Power Capacitor (전력용 커패시터의 전기적 스트레스 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Woong;Lee, Dong-Ju
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.4
    • /
    • pp.370-376
    • /
    • 2008
  • Power capacitors is widely used for power factor correction and component of passive filter in the user power systems. Recently, application of non-linear load is gradually increased. Non-linear load produces harmonic components of current. There are series resonance and parallel resonance when capacitors are applied in the user electrical application. If this harmonic component matches resonance, voltage and current is magnified and has severely an influences on capacitor. This paper purposes a new method for the magnitude of voltage and current by the frequency scan analysis without equivalent circuit for the actual circuit at the resonance condition.

A Finite Element Analysis on Cylinder Liner Deformation of a Diesel Engine (디젤기관 실린더 라이너 변형에 대한 유한요소 해석)

  • Sangho Ahn
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.1
    • /
    • pp.33-40
    • /
    • 2014
  • In this study the cylinder liner deformation which is one of the most influencing factors in a diesel engine oil consumption was performed by the finite element analysis on the basic designed structure consisting of the cylinder block, head and liners under the conditions of assembly, thermal and gas loads. Compared with a large number of other cylinder blocks showing remarkable harmonic orders of the liner distortion, results are excellent. Namely. the higher harmonic order amplitudes of the radial liner deformation amount to 1 ~ 2㎛ maximally. The main reason lies in the relatively large wall thickness of the liner which amounts to 8.2% of the bore diameter. Besides, a very stiff and symmetrical cylinder block design in combination with a bolt force introduction approximately 1.5mm below the block top deck have a further share on these results. Therefore excellent low oil consumption can be expected.

A Study on Harmonics Analysis and Modelling for Distribution System (배전 시스템의 고조파 분석 및 모델링에 관한 연구)

  • Wang, Yong-Peel;Jeong, Jong-Won;Jeong, Dong-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.3
    • /
    • pp.62-68
    • /
    • 2007
  • The increasing use of power electronic equipment in distribution system has been the reason for the greater concern about a harmonic in recent time. Therefore, it is necessary for measurement and modelling to analyze a harmonic level and a transfer characteristic in distribution system. In this paper, the Point of Common Coupling (PCC) is selected to analyze harmonic characteristic of distribution system by IEC 61000-3-6. Harmonic voltage and orient were measured at the PCC of real distribution system Harmonic distribution, nonlinear load component and Total Harmonic Distortion(THD) were verified. The effective and accurate modelling of real distribution system were proved through a analysis of harmonic impedance, voltage and current under steady-state. Harmonic transfer characteristic were investigated through a analysis of harmonic voltage and current under harmonic current source.

Optimized LCL filter Design Method of Utility Interactive Inverter (계통연계형 인버터의 LCL필터 최적 설계기법)

  • Jung, Sang-Hyuk;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.103-109
    • /
    • 2013
  • The conventional LCL filter design method of the utility interactive inverter considers only harmonics attenuation of the current injected to the grid. However, in case of utility-interactive inverter with critical load the voltage quality of the critical load should also be considered for LCL filter design. Also, considering cost and volume of LCL filters. it is important to have minimum values of inductance and capacitance as far as the harmonic standards are satisfied. In this paper a LCL filter design method is proposed to satisfy not only the harmonic standards of the grid current during the grid-connected mode but the voltage quality of the critical load during grid-connected mode and stand-alone mode. With the proposed method optimized values of LCL filters could be obtained by applying weighting factor to voltage ripple across the critical load, inductor volume, amount of reactive current and system bandwidth.