• 제목/요약/키워드: harmonic functions

검색결과 280건 처리시간 0.02초

ASYMPTOTIC BEHAVIOR OF A-HARMONIC FUNCTIONS AND p-EXTREMAL LENGTH

  • Kim, Seok-Woo;Lee, Sang-Moon;Lee, Yong-Hah
    • 대한수학회보
    • /
    • 제47권2호
    • /
    • pp.423-432
    • /
    • 2010
  • We describe the asymptotic behavior of functions of the Royden p-algebra in terms of p-extremal length. We also prove that each bounded $\cal{A}$-harmonic function with finite energy on a complete Riemannian manifold is uniquely determined by the behavior of the function along p-almost every curve.

HARMONIC MAPPINGS RELATED TO FUNCTIONS WITH BOUNDED BOUNDARY ROTATION AND NORM OF THE PRE-SCHWARZIAN DERIVATIVE

  • Kanas, Stanis lawa;Klimek-Smet, Dominika
    • 대한수학회보
    • /
    • 제51권3호
    • /
    • pp.803-812
    • /
    • 2014
  • Let ${\mathcal{S}}^0_{\mathcal{H}}$ be the class of normalized univalent harmonic mappings in the unit disk. A subclass ${\mathcal{V}}^{\mathcal{H}}(k)$ of ${\mathcal{S}}^0_{\mathcal{H}}$, whose analytic part is function with bounded boundary rotation, is introduced. Some bounds for functionals, specially harmonic pre-Schwarzian derivative, described in ${\mathcal{V}}^{\mathcal{H}}(k)$ are given.

THE ATOMIC DECOMPOSITION OF HARMONIC BERGMAN FUNCTIONS, DUALITIES AND TOEPLITZ OPERATORS

  • Lee, Young-Joo
    • 대한수학회보
    • /
    • 제46권2호
    • /
    • pp.263-279
    • /
    • 2009
  • On the setting of the unit ball of ${\mathbb{R}}^n$, we consider a Banach space of harmonic functions motivated by the atomic decomposition in the sense of Coifman and Rochberg [5]. First we identify its dual (resp. predual) space with certain harmonic function space of (resp. vanishing) logarithmic growth. Then we describe these spaces in terms of boundedness and compactness of certain Toeplitz operators.

ONE REMARK FOR CR EQUIVALENCE PROBLEM

  • Hayashimoto, Atusushi
    • 대한수학회지
    • /
    • 제37권2호
    • /
    • pp.245-251
    • /
    • 2000
  • Assume that two boundaries of worm domains, which are parpametrizd by harmonic functions, are CR equivalent. Then we determine the Taylor expansion of CR equivalence mapping and get a relation of harmonic functions.

  • PDF

THE BESOV SPACES OF M-HARMONIC FUNCTIONS

  • Lee, Jin-Kee
    • East Asian mathematical journal
    • /
    • 제19권1호
    • /
    • pp.121-131
    • /
    • 2003
  • We extend the characterization for the analytic Besov space obtained by Nowak to the invariant harmonic Besov space.

  • PDF

직교이방성 평판의 Green 함수에 대한 새로운 해 (A Solution for Green's Function of Orthotropic Plate)

  • 양경진;강기주
    • 대한기계학회논문집A
    • /
    • 제31권3호
    • /
    • pp.365-372
    • /
    • 2007
  • Revisited in this paper are Green's functions for unit concentrated forces in an infinite orthotropic Kirchhoff plate. Instead of obtaining Green's functions expressed in explicit forms in terms of Barnett-Lothe tensors and their associated tensors in cylindrical or dual coordinates systems, presented here are Green's functions expressed in two quasi-harmonic functions in a Cartesian coordinates system. These functions could be applied to thin plate problems regardless of whether the plate is homogeneous or inhomogeneous in the thickness direction. With a composite variable defined as $z=x_1+ipx_2$ which is adopted under the necessity of expressing the Green's functions in terms of two quasi-harmonic functions in a Cartesian coordinates system Stroh-like formalism for orthotropic Kirchhoffplates is evolved. Using some identities of logarithmic and arctangent functions given in this paper, the Green's functions are presented in terms of two quasi-harmonic functions. These forms of Green's functions are favorable to obtain the Newtonian potentials associated with defect problems. Thus, the defects in the orthotropic plate may be easily analyzed by way of the Green's function method.

ON THE ANALYTIC PART OF HARMONIC UNIVALENT FUNCTIONS

  • FRASIN BASEM AREF
    • 대한수학회보
    • /
    • 제42권3호
    • /
    • pp.563-569
    • /
    • 2005
  • In [2], Jahangiri studied the harmonic starlike functions of order $\alpha$, and he defined the class T$_{H}$($\alpha$) consisting of functions J = h + $\bar{g}$ where hand g are the analytic and the co-analytic part of the function f, respectively. In this paper, we introduce the class T$_{H}$($\alpha$, $\beta$) of analytic functions and prove various coefficient inequalities, growth and distortion theorems, radius of convexity for the function h, if the function J belongs to the classes T$_{H}$($\alpha$) and T$_{H}$($\alpha$, $\beta$).

SOME EVALUATIONS OF INFINITE SERIES INVOLVING DIRICHLET TYPE PARAMETRIC HARMONIC NUMBERS

  • Hongyuan Rui;Ce Xu;Xiaobin Yin
    • 대한수학회보
    • /
    • 제61권3호
    • /
    • pp.671-697
    • /
    • 2024
  • In this paper, we formally introduce the notion of a general parametric digamma function Ψ(−s; A, a) and we find the Laurent expansion of Ψ(−s; A, a) at the integers and poles. Considering the contour integrations involving Ψ(−s; A, a), we present some new identities for infinite series involving Dirichlet type parametric harmonic numbers by using the method of residue computation. Then applying these formulas obtained, we establish some explicit relations of parametric linear Euler sums and some special functions (e.g. trigonometric functions, digamma functions, Hurwitz zeta functions etc.). Moreover, some illustrative special cases as well as immediate consequences of the main results are also considered.

BEST CONSTANT IN ZYGMUND'S INEQUALITY AND RELATED ESTIMATES FOR ORTHOGONAL HARMONIC FUNCTIONS AND MARTINGALES

  • Osekowski, Adam
    • 대한수학회지
    • /
    • 제49권3호
    • /
    • pp.659-670
    • /
    • 2012
  • For any $K$ > $2/{\pi}$ we determine the optimal constant $L(K)$ for which the following holds. If $u$, $tilde{u}$ are conjugate harmonic functions on the unit disc with $\tilde{u}(0)=0$, then $$ {\int}_{-\pi}^{\pi}{\mid}\tilde{u}(e^{i\phi}){\mid}\frac{d{\phi}}{2{\pi}}{\leq}K{\int}_{-\pi}^{\pi}{\mid}u(e^{i{\phi}}){\mid}{\log}^+{\mid}u(e^{i{\phi}}){\mid}\frac{d{\phi}}{2{\pi}}+L(K).$$ We also establish a related estimate for orthogonal harmonic functions given on Euclidean domains as well as an extension concerning orthogonal martingales under differential subordination.