• Title/Summary/Keyword: harmful environments

Search Result 144, Processing Time 0.023 seconds

Enhancing Red Tide Image Recognition using NMF and Image Revision (NMF와 이미지 보정을 이용한 적조 이미지 인식 향상)

  • Park, Sun;Lee, Seong-Ro
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.2
    • /
    • pp.331-336
    • /
    • 2012
  • Red tide is a temporary natural phenomenon involving harmful algal blooms (HABs) in company with a changing sea color from normal to red or reddish brown, and which has a bad influence on coast environments and sea ecosystems. The HABs have inflicted massive mortality on fin fish and shellfish, damaging the economies of fisheries for almost every year from 1990 in South Korea. There have been many studies on red tide due to increasing damage from red tide on fishing and aquaculture industry. However, internal study of automatic red tide image classification is not enough. Especially, extraction of matching center features for recognizing algae image object is difficult because over 200 species of algae in the world have a different size and features. Previously studies used a few type of red tide algae for image classification. In this paper, we proposed the red tide image recognition method using NMF and revison of rotation angle for enhancing of recognition of red tide algae image.

Development of an Environmental Friendly Hybrid Power System and its Application to Agricultural Machines (친환경 하이브리드 동력 시스템 개발 및 농기계 응용)

  • Kim, Sangcheol;Hong, Youngki;Kim, Gookhwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.447-452
    • /
    • 2015
  • A hybrid power system was developed for agricultural machines with a 20kW output capacity, and it was attached to a multi-purpose cultivator to improve the performance of the cultivator. The hybrid system combined heterogeneous sources: an internal-combustion engine and an electric power motor. In addition, a power splitter was developed to simplify the power transmission structure. The cultivator using a hybrid system was designed to have increased fuel efficiency and output power and reduced exhaust gas emissions, while maintaining the functions of existing cultivators. The fuel consumption for driving the cultivator in the hybrid engine vehicle (HEV) mode was 341g/kWh, which was 36% less than the consumption in the engine (ENG) mode for the same load. The maximum power take off output of the hybrid power system was 12.7kW, which was 38% more than the output of the internal-combustion engine. In the HEV mode, harmful exhaust gas emissions were reduced; i.e., CO emissions were reduced by 36~41% and NOx emissions were reduced by 27~51% compared to the corresponding emissions in the ENG mode. The hybrid power system improved the fuel efficiency and reduced exhaust gas emissions in agricultural machinery. The hybrid system's lower exhaust gas emissions have considerable advantages in closed work environments such as crop production facilities. Therefore, agricultural machinery with less exhaust gas emissions should be commercialized.

Responses of Various Biomarkers in Common Carp (Cyprinus carpio) Exposed to Benzo[k]fluoranthene

  • Kim, Woo-Keun;Kim, Ja-Hyun;Yeom, Dong-Hyuk;Lee, Sung-Kyu
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.331-337
    • /
    • 2008
  • Polycyclic aromatic hydrocarbons (PAHs) derived from leakage of fossil fuels and incomplete combustion of organic materials have been considered as harmful contaminants in environments. This study evaluated the effect of benzo[k]fluoranthene (BkF), one of the PAHs, using the multiple biomarkers and applied the integration model with those biomarker responses. After 10 days of the exposure at the measured concentrations of BkF (6, 25, and 45 ${\mu}g\;L^{-1}$), the changes of the four biomarkers, that is, 7-ethoxyresorufin-O-deethylase (EROD), DNA single-strand breaks (Comet), acetylcholinesterase (AChE) and vitellogenin (VTG) in the common carp (Cyprinus carpio) were observed. The standardized values of four biomarker responses were computed and integrated as star plots, representing Integrated Biomarker Respnse (IBR) values. DNA damage was induced in a dose-dependent manner, and increased significantly compared with that in the control. EROD and VTG levels were significantly elevated at low concentrations of BkF. On the other hand, AChE activities were not altered by BkF. IBR values increased as the exposure concentrations increased. Thus, the metabolic, endocrine and genetic changes of the biomarker responses in the common carp exposed to BkF should be considered in the case of the ecological risk assessment of the BkF in fish and it can be used as a biomonitoring tool in aquatic ecosystems. In addition, star plots can be used as a useful analysis tool in multibiomarker integration approach.

Analyzing the Relationship between the Spatial Configuration of Urban Streets and Air Quality (도시가로의 형태요소와 대기질과의 관계 연구)

  • Chu, Junghyun;Oh, Kyushik;Jeong, Yeun-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.2
    • /
    • pp.73-82
    • /
    • 2009
  • The traffic volume of Seoul is extremely high in comparison to other major cities in Korea, and the result has been harmful physical and mental exposure to pollution by Seoulites on a regular basis. The street air pollution is more important than the others, because the air pollution generated by street traffic directly impacts the health of nearby pedestrians. This problem requires urgent attention and resolution. Among the factors creating the air pollution originating from the street, is the configuration of streets, which have emerged as the most significant because it is related to air and pollutant dispersion. Therefore, this study was conducted under the assumption that street form affects the air quality. Study sites were classified by street characteristics, and air quality was analyzed in each class. Then the OSPM (Operational Street Pollution Model) was employed to simulate the relationship between street configuration and air quality of streets within the old city center and new city center in Seoul. After that this study analyzed the correlation between air pollution and the spatial configuration of urban streets (ex. street width, building height, building density, etc.) to determine their contributions to air pollution. The outcome of this study is as follows : First, the result that was derived from the correlation analysis between street configuration and air quality hewed that the air pollution of the street is influenced by the average height of building, width of the roads as well as traffic volume. On the roadside, the concentration level of $NO_2$ is mainly affected by the average height of building and the deviation of building height along the street and CO is affected by street width. The outcome of this study can be used as a basis for more sound urban design policies, and the promotion of desirable street environments for pedestrians.

Permeation properties of concretes incorporating fly ash and silica fume

  • Kandil, Ufuk;Erdogdu, Sakir;Kurbetci, Sirin
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.357-363
    • /
    • 2017
  • This paper conveys the effects of fly ash and silica fume incorporated in concrete at various replacement ratios on the durability properties of concretes. It is quite well known that concrete durability is as much important as strength and permeability is the key to durability. Permeability is closely associated with the voids system of concrete. Concrete, with less and disconnected voids, is assumed to be impermeable. The void system in concrete is straightly related to the mix proportions, placing, compaction, and curing procedures of concrete. Reinforced concrete structures, particularly those of subjected to water, are at the risk of various harmful agents such as chlorides and sulfate since the ingress of such agents through concrete becomes easy and accelerates as the permeability of concrete increases. Eventually, both strength and durability of concrete reduce as the time moves on, in turn; the service life of the concrete structures shortens. Mineral additives have been proven to be very effective in reducing permeability. The tests performed to accomplish the aim of the study are the rapid chloride permeability test, pressurized water depth test, capillarity test and compressive strength test. The results derived from these tests indicated that the durability properties of concretes incorporated fly ash and silica fume have improved substantially compared to that of without mineral additives regardless of the binder content used. Overall, the improvement becomes more evident as the replacement ratio of fly ash and silica fume have increased. With regard to permeability, silica fume is found to be superior to fly ash. Moreover, at least a 30% fly ash replacement and/or a replacement ratio of 5% to 10% silica fume have been found to be highly beneficial as far as sustainability is concerned, particularly for concretes subjected to chloride bearing environments.

In vitro Screening of Jeju Medicinal Plants for Cosmeceutical Materials

  • Kim, Sang-Suk;Hyun, Chang-Gu;Lee, Jong-Sung;Lim, Ji-Hee;Kim, Ji-Young;Park, Deok-Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.215-220
    • /
    • 2007
  • One of the important functions of skin is protection from harmful environments. Many studies have explored how to prevent skin from wrinkling and the occurrence of pigmentation changes. Skin wrinkling and pigmentation changes could be caused by unusual disruption of connective tissue, the formation of free radicals and ultraviolet radiation. In this study, extracts obtained from 254 different kinds of Jeju medicinal plants were screened for inhibitory effects on tyrosinase and elastase, and for free radical scavenging effects. Four herbs, Phormium tenax, Morus bombycis, Morus alba, and Cudrania tricuspidata, were potent inhibitors of tyrosinase ($IC_{50}$ values 4.62, 5.46, 8.17, and 64.17 ${\mu}g$/mL, respectively). Aleurites fordii [$IC_{50}$: 5.29 ${\mu}g$/mL, 1,1-diphenyl-2-picrylhydrazyl (DPPH)], Distylium racemosum ($IC_{50}$: 6.14 ${\mu}g$/mL), Acer palmatum ($IC_{50}$: 5.44 ${\mu}g$/mL), and Spiraea salicifolia ($IC_{50}$: 5.25 ${\mu}g$/mL) showed good antioxidative effects. Furthermore, Distylium racemosum ($IC_{50}$: 7.51 ${\mu}g$/mL), Diospyros kaki ($IC_{50}$: 15.1 ${\mu}g$/mL), Cornus macrophylla ($IC_{50}:$ 16.59 ${\mu}g$/mL), and Psidium guajava ($IC_{50}$: 40.25 ${\mu}g$/mL) exhibited potent inhibitory effects on elastase. These results suggest that medicinal plants possessing several biological activities may be potent inhibitors of the processes involved in pigmentation increases and aging. Further investigations will focus on in vivo assays and on the chemical identification of the major active components responsible for whitening and anti-aging activity in the screened efficacious extracts.

Toxic effects of Aroclor 1016 and bisphenol A on marine green algae Tetraselmis suecica, diatom Ditylum brightwellii and dinoflagellate Prorocentrum minimum (해양 녹조류 Tetraselmis suecica, 규조류 Ditylum brightwellii, 와편모조류 Prorocentrum minimum에 대한 Aroclor 1016과 비스페놀 A의 독성 효과)

  • Ebenezer, Vinitha;Ki, Jang-Seu
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.306-312
    • /
    • 2016
  • Microalgae are the potential bioindicators of environmental changes, for the environmental risk assessment as well as to set limits for toxic chemical release in the aquatic environment. Here, we evaluated the effects of two endocrine disrupting chemicals (EDCs), namely bisphenol A (BPA) and Aroclor 1016, on the green algae Tetraselmis suecica, diatom Ditylum brightwellii, and dinoflagellate Prorocentrum minimum. Each species showed wide different sensitivity ranges when exposed to these two EDCs; the 72 h effective concentration ($EC_{50}$) for these test species showed that Aroclor 1016 was more toxic than BPA. $EC_{50}$ values for the diatom D. birghtwellii were calculated at 0.037 mg/L for BPA and 0.002 mg/L for Aroclor 1016, representing it was the most sensitive when compared to the other species. In addition, these results suggest that these EDC discharge beyond these concentrations into the aquatic environments may cause harmful effect to these marine species.

IATROGENIC CHEMICAL BURN ON FACIAL SKIN BY 37% PHOSPHORIC ACID ETCHANT (37% 인산 부식제에 의해 발생한 안면피부의 화학 화상)

  • Park, Jong-Hyun;Shin, Hye-Jin;Park, Se-Hee;Kim, Jin-Woo;Cho, Kyung-Mo
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.1
    • /
    • pp.38-41
    • /
    • 2009
  • When we use the total-etch dentin adhesive system for composite resin restorations, gel or liquid acid etchant such as 37% phosphoric acid is commonly used. Thirty seven percentage phosphoric acid is very powerful erosive agent, and can cause severe harmful effects when it contacts with an oral mucosa and facial skin. This case describes iatrogenic chemical burn on facial skin caused by phosphoric acid which was happened during composite resin restorative procedure. Chemical burn by acid etchant can be evoked by careless handling of remnant and syringe. In order to prevent these iatrogenic injuries, we should check the complete removal of the etching agent both in intra and extra-oral environments after etching and rinsing procedure and it is necessary to use of the rubber dam or isolation instruments. If accidental burn were occurred. immediate wash with copious water. And bring the patient to the dermatologist as soon as possible.

On the Performance of Cooperative Spectrum Sensing of Cognitive Radio Networks in AWGN and Rayleigh Fading Environments

  • Saad, Wasan Kadhim;Ismail, Mahamod;Nordin, Rosdiadee;El-Saleh, Ayman A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1754-1769
    • /
    • 2013
  • For the purpose of enhancing the spectrum efficiency, cognitive radio (CR) technology has been recently proposed as a promising dynamic spectrum allocation paradigm. In CR, spectrum sensing is the key capability of secondary users in a cognitive radio network that aims for reducing the probability of harmful interference with primary users. However, the individual CRs might not be able to carry out reliable detection of the presence of a primary radio due to the impact of channel fading or shadowing. This paper studies the cooperative spectrum sensing scheme as means of optimizing the sensing performance in AWGN and Rayleigh channels. Results generated from simulation provide evidence of the impact of channel condition on the complementary receiver operating characteristic (ROC). Based on the results, it was found that with constant local SNRs at the secondary users, the probability of missed detection ($P_m$) of cooperative spectrum sensing in a cognitive radio network, calculated using a closed form expression, can be significantly minimized. Thus, the paper illustrates that improvement of the detection performance of the CR network can be achieved by establishing a centralized cooperation among neighboring cognitive radio users. Finally, verification of the validity of the fusion schemes utilized for combining the individual CR decisions is provided.

A Study on the high Temperature Properties of the Graded Thermal Barrier Coatings by APS and PAS (APS법으로 제조된 열장벽 피막과 PAS법으로 제조된 열장벽 성형체의 고온 물성에 관한 연구)

  • 강현욱;권현옥;한주철;송요승;홍상희;허성강;김선화
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.2
    • /
    • pp.144-156
    • /
    • 1999
  • Thermal Barrier Coating with Functional Gradient Materials (FGM-TBC) can play an important role to protect the parts from harmful environments in high temperatures such as oxidation, corrosion, and wear and to improve the efficiency of aircraft engine by lowering the surface temperature on turbine blade. FGM-TBC can increase the life spans of product and improve the operating properties. Therfore, in this study the evaluations of mechanical and thermal properties of FGM-TBC such as fatigue, oxidation and wear-resistance at high temperatures have been conducted. The samples of both the TBC with 2, 3, 5 layers (YSZ/NiCrAlY) to be produced by Air Plasma Spray method (APS) and the bulk TBC with 6 layers to be produced by Plasma Assisted Sintering method (PAS) were used. Furthermore, residual stress, bond strength, and thermal conductivity were evaluated. The average thickness of the APS was 500$\mu\textrm{m}$ to 600$\mu\textrm{m}$ and the average thickness of the PAS was 3mm. The hardness number of the top layer of APS was 750 Hv to 810Hv and that of PAS was 950 Hv to 1440Hv. The $ZrO_2$ coating layer of APS was composed of tetragonal structure after spraying as the result of XRD analysis. As shown in the results of the high temperature wear test, the 3 layer coating of APS had the best wear resistance at $800^{\circ}C$ and the 5 layer coating of APS had the best wear resistance at $600^{\circ}C$. But, these coatings had the tendency of the low-temperature softening at $300^{\circ}C$. The main mechanism of wear was the adhesive wear and the friction coefficient of coatings was increased as increasing the test temperatures. A s results of thermal conductivity test, the ${\Delta}T$ of the APS coating was increased as number of layer and the range of thermal conductivity of the PAS was $800^{\circ}C$ to $1000^{\circ}C$.

  • PDF