• Title/Summary/Keyword: hardware-in-the-loop (HIL) simulation

Search Result 76, Processing Time 0.022 seconds

Development of the Winch System Model for HILS of the Winch Control System (해상크레인용 윈치 제어시스템 HILS 구축을 위한 윈치 시스템 모델 개발)

  • Lim, Chae-Og;Shin, Sung-Chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.937-946
    • /
    • 2021
  • The floating crane is used to lift the heavyweight on the ocean. The floating crane has a winch system for lifting the heavyweight and the system is controlled by the winch control system. The heavyweight is lifted safely by control of the winch control system. Before the make the control system and controller, there are many restricted conditions to test and validate at design and development steps. In order to solve the problems, commonly use the HILS (Hardware-In-the-Loop-Simulation). HILS is the method of test and validation for the hardware control system. It can be composed of the control system in hardware with surrounding environments which is a virtual model. In this study, we developed the winch system model for HILS of the 150t winch control system in a floating crane. Through this simulation and winch model, it can be applied to HILS for the winch control system.

Road Adaptive Skyhook Control and HILS for Semi-Active Macpherson Suspension Systems (맥퍼슨형 반능동 현가장치의 노면적응형 스카이훅 제어와 HILS)

  • 박배정;홍금식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.34-44
    • /
    • 2000
  • In this paper, a modified skyhook control for the semi-active Macpherson suspension system is investigated. A new model for the semi-active type suspension, which incorporates the rotational motion of the unsprung mass, is introduced and an output feedback control law using the skyhook control method is derived. The gains in the skyhook controller are adaptively adjusted by estimating the road conditions. Because two vertical acceleration sensors, one for the sprung mass and another for the unsprung mass, are used rather than using the angle sensor for the rotational motion of the control arm, the relative velocity of the rattle space is filtered using the acceleration signals. For testing the control performance, the actual damping force has been incorporated via the hardware-in-the-loop simulations. The performances of a passive damper and a semi-active damper are compared. Simulation results are provided.

  • PDF

HIL based LNGC PMS Simulator's Performance Verification (HIL 기반 LNGC PMS 시뮬레이터의 성능 검증)

  • Lee, Kwangkook;Park, Jaemun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.219-220
    • /
    • 2016
  • A power management system (PMS) has been an important part in a ship integrated control system. To evaluate a PMS for a liquefied natural gas carrier (LNGC), this research proposes a real-time hardware-in-the-loop simulation (HILS), which is composed of major component models such as turbine generator, diesel generator, governor, circuit breaker, and 3-phase loads on MATLAB/Simulink. In addition, FPGA based control console and main switchboard (MSBD) are constructed in order to develop an efficient control and a similar real environment in an LNGC PMS. A comparative study on the performance evaluation of PMS functions is conducted using two test cases for sharing electric power to consumers in an LNGC. The result shows that the proposed system has a high verification capability for the operating function and failure insertion evaluation as a PMS simulator.

  • PDF

Development of Hardware In the Loop System for Cyber Security Training in Nuclear Power Plants (원자력발전소 사이버보안 훈련을 위한 HIL(Hardware In the Loop) System 개발)

  • Song, Jae-gu;Lee, Jung-woon;Lee, Cheol-kwon;Lee, Chan-young;Shin, Jin-soo;Hwang, In-koo;Choi, Jong-gyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.4
    • /
    • pp.867-875
    • /
    • 2019
  • Security awareness and training are becoming more important as cyber security incidents tend to increase in industrial control systems, including nuclear power plants. For effective cyber security awareness and training for the personnel who manage and operate the target facility, a TEST-BED is required that can analyze the impact of cyber attacks from the sensor level to the operation status of the nuclear power plant. In this paper, we have developed an HIL system for nuclear power plant cyber security training. It includes nuclear power plant status simulations and specific system status simulation together with physical devices. This research result will be used for the specialized cyber security training program for Korean nuclear facilities.

Analytic Comparison of LCL Filter Characteristics of Three-phase Grid-connected Inverter by On/Off-line Simulation Tools (온/오프라인 시뮬레이션 툴을 이용한 계통연계형 인버터의 LCL 필터 특성 분석비교)

  • Lee, Gang;Cha, Hanju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.16-22
    • /
    • 2020
  • The characteristics of the LCL filter for grid-connected inverters have been discussed in academia and industry. An online simulation tool was applied to compare and analyze the difference between the LCL filter and L filter. LCL filters were modeled and simulated using a range of professional simulation simulators, and the LCL filters were found to have good filtering effects for high-frequency harmonics. First, this paper summarizes the transfer functions of the LCL filter and provides the Bode plot diagram. The accuracy and validity of the filter attenuation characteristics were confirmed by a fast Fourier transform based on off-line simulation tools, such as PSIM and MATLAB, depending on the given parameters of the LCL filter. Finally, the Typhoon HIL402 real-time simulation was performed for hardware in the loop simulation to verify the actual filtering characteristics of the LCL filter.

Development of a Lane Keeping Assist System using Vision Sensor and DRPG Algorithm (비젼센서와 DRPG알고리즘을 이용한 차선 유지 보조 시스템 개발)

  • Hwang, Jun-Yeon;Huh, Kun-Soo;Na, Hyuk-Min;Jung, Ho-Gi;Kang, Hyung-Jin;Yoon, Pal-Joo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.50-57
    • /
    • 2009
  • Lane Keeping Assistant Systems (LKAS) require the cooperative operation between drivers and active steering angle/torque controllers. An LKAS is proposed in this study such that the desired reference path generation (DRPG) system generates the desired path to minimize the trajectory overshoot. Based on the reference path from the DRPG system, an optimal controller is designed to minimize the cost function. A HIL (Hardware In the Loop) simulator is constructed to evaluate the proposed LKAS system. The single camera is mounted on the simulator and acquires the monitor images to detect lane markers. The performance of the proposed system is evaluated by HIL system using the Carsim and the Matlab Simulink.

Low Voltage Ride Through Test for Smart Inverter in Power Hardware in Loop System (전력 HILs를 활용한 스마트 인버터의 LVRT 시험)

  • Sim, Junbo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.101-105
    • /
    • 2021
  • Encouragement of DER from Korean government with several policies boosts DER installation in power system. When the penetration of DER in the grid is getting high, loss of generation with break-away of DER by abnormal grid conditions should be considered, because loss of high generation causes abnormal low frequency and additional operations of protection system. Therefore, KEPCO where is Korean power utility is preparing improvement in regulations for DERs connected to the grid to support abnormal grid conditions such as low and high frequencies or voltages. This is called 'Ride Through' because the requirement is for DER to maintain grid connection during required periods when abnormal grid conditions occur. However, it is not easy to have a test for ride through capability in reality because emulation of abnormal grid conditions is not possible in real power system in operation. Also, it is not easy to have a study on grid effect when ride through capability fails with the same reason. PHILs (Power Hardware In the Loop System) makes it possible to analyze power system and hardware performance at once. Therefore, this paper introduces PHILs test methods and presents verification of ride through capability especially for low voltage grid conditions.

Optimal Ccontrol Strategy of Cooling System for Polymer Electrolyte Membrane Fuel Cell using Hardware-In-the-Loop Simulation (Hardware-In-the-Loop Simulation을 이용한 고분자 전해질 연료전지 냉각시스템 최적 제어기법 연구)

  • Choi, Eunyeong;Ji, Hyunjin
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.113-121
    • /
    • 2016
  • Polymer electrolyte membrane fuel cell(PEMFC) requires cooling system to maintain the proper operating temperature(about $65^{\circ}C{\sim}75^{\circ}C$) because the efficiency and power are affected by operating temperature. In order to retain the operating temperature of PEMFC, cooling system and coolant control logic are needed. Hardware-in-the-loop simulation(HILS) is one of effective methods to study and evaluate control algorithm. In this paper, the HILS system was designed to study the coolant control algorithm. The models of HILS system consisted of PEMFC, heat exchanger, and external environment associated with temperature. The hardwares in HILS system are 3-way valves, pumps, and a heat exchanger. The priority control and the control target temperature were investigated to improve the control performance using HILS. The 3-way valve in $1^{st}$ cooling circuit was selected as priority control target. The under limit value of $2^{nd}$ 3-way valve set as a function of PEMFC power and $2^{nd}$ circuit coolant temperature to correct temperature control performance. As a result, the temperature of PEMFC is stably controlled.

Development of Environment for HIL Simulation of Real-time Disaster-Prevention UAV(Unmanned Aerial Vehicle) (실시간 방재형 무인비행체의 HIL시뮬레이션을 위한 환경 개발)

  • Chung, Duckwon;Min, Dugki
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.796-799
    • /
    • 2009
  • 재해 및 재난 발생에 따른 피해를 최소화하고자 무인헬기 기술과 IT기술의 실시간 방재 시스템을 융합하여 광범위한 환경을 대상으로 실시간 다각적 정보수집 기능을 제공하는 연구가 진행 중이다. 소형무인헬기에 개량된 자동항법기능과 무선 네트워크 기반의 실시간 멀티미디어 중계기능을 탑재하고 쉽게 사용 할 수 있는 지상관제시스템을 개발하여 대형재난 현장에 사용하면 다각적 동영상과 재해 현장 정보를 실시간으로 제공함으로써 초기 대응을 할 수 있어 재난의 확산을 최대한 방지 할 수 있다. 본 논문에서는 이러한 시스템을 보다 효과적으로 개발하기 위한 HILS(Hardware in the Loop Simulation) 기반 무인헬기 시뮬레이션 환경을 개발하고자 한다.

Performance Evaluation on an Active Camera Mount System for UAV via Hardware-in-the-loop-simulation (HILS를 통한 무인항공기 카메라 지지 능동 마운트 시스템의 진동제어 성능 평가)

  • Oh, Jong-Suk;Choi, Seung-Bok;Cho, Han-Jun;Lee, Chul-Hee;Cho, Myeong-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.8
    • /
    • pp.767-773
    • /
    • 2010
  • In the present work, vibration control performance of piezoactuator-based active mount system for unmanned aero vehicle(UAV) equipment is evaluated via hardware in the loop simulation(HILS). At first, the vibration level of UAV is measured and from this vibration data, the proper piezostack actuator is selected. Then, the dynamic model of active mount system including four active mounts and UAV camera equipment is derived. In order to evaluate vibration control performance, the HILS system is constructed. The proposed mount is prepared as hardware part and the other mounts are considered in software part. A sliding mode controller is designed and implemented to the HILS system. Effective vibration control results are presented in both time and frequency domains.