• Title/Summary/Keyword: hardness and microstructure

Search Result 1,341, Processing Time 0.028 seconds

Synthesis of WC-CrN superlattice film by cathodic arc ion plating system

  • Lee, Ho. Y.;Han, Jeon. G.;Yang, Se. H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.421-428
    • /
    • 2001
  • New WC-CrN superlattice film was deposited on Si substrate (500$\mu\textrm{m}$) using cathodic arc ion plating system. The microstructure and mechanical properties of the film depend on the superlattice period (λ). In the X-ray diffraction analysis (XRD), preferred orientation of microstructure was changed according to various superlattice periods(λ). During the Transmission Electron Microscope analysis (TEM), microstructure and superlattice period (λ) of the WC - CrN superlattice film was confirmed. Hardness and adhesion of the deposited film was evaluated by nanoindentation test and scratch test, respectively. As a result of nanoindentation test, the hardness of WC - CrN superlattice film was gained about 40GPa at superlattice period (λ) with 7nm. Also residual stress with various superlattice period (λ) was measured on Si wafer (100$\mu\textrm{m}$) by conventional beam-bending technique. The residual stress of the film was reduced to a value of 0.2 GPa by introducing Ti - WC buffer layers periodically with a thickness ratio ($t_{buffer}$/$t_{buffer+superlattice}$ ). To the end, for the evaluation of oxidation resistance at the elevated temperature, CrN single layer and WC - CrN superlattice films with various superlattice periods on SKD61 substrate was measured and compared with the oxidation resistance.

  • PDF

Development of new bimetal material for home appliances by using the rolling process (압연공정을 이용한 가전용 신 바이메탈재의 개발)

  • Park, S.S.;Bae, D.S.;Bae, D.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.389-393
    • /
    • 2007
  • The most demanded bimetals in home appliances are manufactured by mainly cladding process and these are mainly consist of Cu alloy and Ni alloy. But it is very difficult to clad these alloys, because the brittle ${Cu_3}{O_4}$ oxide film formed easily on Cu alloy surface during cladding process. Clad rolling and heat treatment processes were applied for the development of bimetals by using the Ni alloy and the 3 types of Cu alloys. Optical microstructure was observed and micro-hardness, specific resistance, deflection were measured from the manufactured new bimetals specimens.

  • PDF

Prediction of Phase Transformation and Mechanical Property of Carbon Steel in Quenching based on Finite Element Analysis (유한요소해석을 이용한 탄소강의 담금질 공정에 대한 상변태 및 기계적 성질 예측)

  • Kim, D.K.;Jung, K.H.;Kang, S.H.;Im, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.173-176
    • /
    • 2009
  • A great emphasis has been placed on the design of heat treatment process to achieve desired microstructure and mechanical property of final product. In this study, finite element analysis was carried out to predict temperature, microstructure and hardness of eutectoid steel after water quenching. Convective heat transfer coefficients were determined by inverse analysis using surface temperatures measured with three different installation methods of thermocouples. Finally, the effect of convective heat transfer coefficients on the prediction of temperature history and hardness was analyzed by comparing experimental and simulation results.

  • PDF

The Microstructure Characteristics of Laser Remelted Cobalt-Based Hardfacing Alloys (레이저 Remelting 처리된 Co 기지 하드페이싱 합금의 미세조직 특성)

  • Han Won Jin;Kim Woo Sung
    • Laser Solutions
    • /
    • v.7 no.2
    • /
    • pp.27-38
    • /
    • 2004
  • Laser remelting of surface of cobalt-based hardfacing alloy can eliminate impurities and cracks and improve the wear resistance. In this present study, Stellite ${\sharp}6\;and\;{\sharp}21$ harfacing alloys were remelted by a 3kW CO2 laser. Hardness distribution and microstructures in the laser remelted zone was investigated. Our results showed that in proper laser parameters laser remelted surface of hardfacing alloy had more refined microstructure and more increased micro-hardness than the base material.

  • PDF

The Change in Diffusion Coefficient and Wear Characteristic in Carbonitriding Layer of SCM415 Steel (침탄질화 처리된 SCM415강의 깊이에 따른 확산 및 마모특성 변화)

  • Lee, Su-Yeon;Youn, Kuk-Tea;Huh, Seok-Hwan;Lee, Chan-Gyu
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.5
    • /
    • pp.207-212
    • /
    • 2011
  • In this study, the change in diffusion coefficient and wear characteristic with depth in the carbonitriding layer of SCM415 steel was discussed. To determine the diffusion coefficient, depth profile of carbon was measured from the surface using the Glow Discharge Spectrometer. In otherwise, measurements of carbide fraction, micro vickers hardness of surface and observation of microstructure have been implemented through the SEM image. $Fe_3$(C,N) layer and effective depth were increased as the time for carbonitriding takes longer. According to wear experiment, the results showed that wear resistance was improved by $Fe_3$(C,N) layer and effective depth.

Microstructure Formation and mechanical Properties of $\alpha$-$\beta$ ($\alpha$-$\beta$ SiAlON의 미세구조 형성과 특성)

  • 최민호;김득중
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.169-176
    • /
    • 1996
  • The specimens which were prepared from $\alpha$-Si3N4 with additions of YAG(3Y2O3.5Al2O3)-10 wt% and various AlN contents were sintered in N2 atmosphere at 1$700^{\circ}C$ The effect of $\alpha$,$\beta$-solid solution contents and sintering time on mechanical properties were investigated. As the content of $\beta$-solid solution and sintering time increased the hardness is reduced but the hardness of specimen sintered over 10 hours is constant irrespective of sintering time. While the fracture toughness increased with increasing of $\beta$-solid solution and sintering time. The fracture toughness of specimen with 80% $\beta$-solid solution content increased from 3.89 to 6.66 MPam1/2 with sintering sintering up to 20 hours/ But the amount of increased fracture toughness of specimen with below 20% $\beta$-solid solution content is not significant.

  • PDF

The effect of cooling rates on carbide precipitate and microstructure of 9CR-1MO oxide dispersion strengthened(ODS) steel

  • Jang, Ki-Nam;Kim, Tae-Kyu;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.249-256
    • /
    • 2019
  • The 9Cr-1Mo ferritic-martensitic ODS steel is a promising structural material for the next generation nuclear power plants including fast reactors for application in reactor vessels and nuclear fuel. The ODS steel was cooled down by furnace cooling, air cooling, oil quenching and water quenching, respectively, after normalizing it at $1150^{\circ}C$ for 1 h and then tempering at $780^{\circ}C$ for 1 h. It is found that grain size, a relative portion of ferrite and martensite, martensitic lath configuration, behaviors of carbide precipitates, and hardness of the ODS steel are strongly dependent on a cooling rate. The grain size and martensitic lath width become smaller with the increase in a cooling rate. The carbides were precipitated at the grain boundaries formed between the ferrite and martensite phases and at the martensitic lath interfaces. In addition, the carbide precipitates become smaller and more widely dispersed with the increase in a cooling rate, resulting in that the faster cooling rate generated the higher hardness of the ODS steel.

A Study on Characteristics of Al-Pb Strips and Its Sintering Behavior (Al-Pb계 합금분말의 성형 및 소결 특성에 관한 연구)

  • Moon, Jong-Tai;Lee, Young-Kun;Lee, Yong-Ho;Cho, Sung-Suk
    • Journal of Korea Foundry Society
    • /
    • v.10 no.5
    • /
    • pp.435-443
    • /
    • 1990
  • By using the centrifugal atomization, which is one of the rapid solidification processes, Al-5,10wt%Pb alloys which are monotectic alloys were melted at 150K over two liquid phase line in the phase diagram. The melted alloy was poured on the rotating disk, being made into atomized powders, and then the solidified microstructure and morphology of the powder were investigated. This study converted the produced powders into strips by strained powder rolling. According to sintering temperature, the microstructure and hardness were investigated. The solidified structure of the powders were almost cellular dendritic structure. Pb particles ($2.0-3.0{\mu}m$) were fairl distributed in the Al matrix. Powder shapes were irregular. Rolling property and the compacting was good, respectively, because of increasing mechanical interlocking and surface area in the small size powders. With increasing temperature, the boundarys of powders were in porous form due to the diffusion. Pb particles which were surrounding the pores were inverse-segregated at the surface of the powders. With increasing of sintering temperature, the hardness of the powders and the strips decreased. In particular rolling-strip, the hardness abruptly decreased due to the release of work-hardening.

  • PDF

Microstructure and Mechanical Properties of ODS Ferrite Produced by Reactive Milling for the MSR Suppression (MSR (Mechanically induced Self-sustaining Reaction)이 억제된 반응성 밀링에 의해 제조된 분산강화 페라이트의 미세조직과 기계적 특성)

  • Hwang, Seung J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.6
    • /
    • pp.279-287
    • /
    • 2013
  • Oxide Dispersion Strengthened (ODS) Fe with $Al_2O_3$ dispersoid was successfully produced by reactive milling with a mixture of Fe, $Fe_3O_4$ (Magnetite), $Fe_2O_3$ (Hematite) and Al reactants at cryogenic temperature. The milled powders were consolidated by Vacuum Hot Press (HP) at 1323 K, and the consolidated materials were characterized by Transmission Electron Microscopy (TEM), Scanning Transmission Electron Microscopy (STEM), and Energy Dispersive Spectroscopy (EDS); the yield strength and the hardness of the consolidated materials were determined by compressive test and Vickers hardness test at room temperature. The grain size of the materials was estimated by X-ray Diffraction technique using the scherrer's formula. The TEM observations showed that the microstructure was comprised with a mixture of nanocrystalline Fe matrix and $Al_2O_3$ nano-dispersoids with a bimodal size distribution; the 0.2% off-set yield strength of the materials was as high as $758{\pm}29$ MPa and the Vickers hardness was $358{\pm}2$. The effect of the cryogenic milling and addition of extra Fe powder was discussed on the suppression of MSR (Mechanically induced Self-sustaining Reaction) for the desired microstructural evolution of ODS alloys.

Effects of Heat Treatments on Microstructure , Hardness and Abrasive Wear Resistance in 3%C-10%Cr-5%Mo-5%W White Cast Iron (3%C-10%Cr-5%Mo-5%W 백주철에 있어서 열처리가 현미경조직, 경도 및 내마모성에 미치는 영향)

  • Yu, Sung-Kon
    • Journal of Korea Foundry Society
    • /
    • v.19 no.1
    • /
    • pp.33-37
    • /
    • 1999
  • White cast iron of 3%C-10%Cr-5%Mo-5%W was casted, and then heat treated with three different methods such as homogenizing, austenitizing and tempering to observe its effects on the microstructure, hardness and abrasive wear resistance. In uni-directional soldification, bamboo tree-like $M_7C_3$ carbide grew along with the heat flow direction, and fishbone-like $M_6C$ carbide was dispersed randomly among $M_7C_3$ carbides. While almost pearlitic structures were observed in the as-cast specimen, those of the heat treated specimens consisted of secondary carbide, retained austenite and tempered martensite. In austenitized specimen, the amounts of retained austenite were 60.88% due to the higher cooling rate encountered in forced air cooling. On the other hand, the amounts of retained austenite were reduced from 60.88% to 23.85% in tempered specimen due to the transformation of austenite into tempered martensite. The hardness of tempered specimen showed the highest value, and then decreased in the order of austenitized, as-cast and homogenized specimens. But, the abrasive wear resistance of austenitized specimen was the highest, and then decreased in the order of tempered, as-cast and homogenized specimens.

  • PDF