• Title/Summary/Keyword: hardening rate

Search Result 423, Processing Time 0.025 seconds

Determination of Flow Stress and Friction Factor by the Ring Compression Test (II) (링압축실험에 의한 유동응력 및 마찰인자의 결정 (II))

  • 최영민;김낙수
    • Transactions of Materials Processing
    • /
    • v.3 no.2
    • /
    • pp.215-228
    • /
    • 1994
  • The purpose of this paper is to pursue a general method to determine both the flow stress of a material and the friction factor by ring compression test. The materials are assumed to obey the expanded n-power hardening rule including the strain-rate effect. Ring compression is simulated by the rigid-plastic finite element method to obtain the database used in determining the flow stress and friction factor. The Simulation is conducted for various strain hardening exponent, strain-rate sensitivity, friction factor, and compressing speed, as variables. It is assumed that the friction factor is constant during the compression process. To evaluate the compatibility of the database, experiments are carried out at room and evaluated temperature using specimens of aluminum 6061-T6 under dry and grease lubrication condition. It is shown that the proposed test method is useful and easy to use in determining the flow stress and the friction factor.

  • PDF

High Performance Fiber Reinforced Cement Composites with Innovative Slip Hardending Twisted Steel Fibers

  • Kim, Dong-Joo;Naaman, Antoine E.;El-Tawil, Sherif
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.2
    • /
    • pp.119-126
    • /
    • 2009
  • This paper provides a brief summary of the performance of an innovative slip hardening twisted steel fiber in comparison with other fibers including straight steel smooth fiber, high strength steel hooked fiber, SPECTRA (high molecular weight polyethylene) fiber and PVA fiber. First the pull-out of a single fiber is compared under static loading conditions, and slip rate-sensitivity is evaluated. The unique large slip capacity of T-fiber during pullout is based on its untwisting fiber pullout mechanism, which leads to high equivalent bond strength and composites with high ductility. Due to this large slip capacity a smaller amount of T-fibers is needed to obtain strain hardening tensile behavior of fiber reinforced cementitious composites. Second, the performance of different composites using T-fibers and other fibers subjected to tensile and flexural loadings is described and compared. Third, strain rate effect on the behavior of composites reinforced with different types and amounts of fibers is presented to clarify the potential application of HPFRCC for seismic, impact and blast loadings.

Plasticity and Fracture Behaviors of Marine Structural Steel, Part V: Effects of Strain Rate and Temperature (조선 해양 구조물용 강재의 소성 및 파단 특성 V: 온도 의존성을 고려한 변형률 속도에 관한 실험적 연구)

  • Choung, Joon-Mo;Im, Sung-Woo;Kim, Kyung-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.73-84
    • /
    • 2011
  • This is the fifth in a series of companion papers dealing with the dynamic hardening properties of various marine structural steels at intermediate strain rates. Five steps of strain rate levels (0.001, 1, 10, 100, 200/s) and three steps of temperature levels (LT ($-40^{\circ}C$), RT, and HT ($200^{\circ}C$)) were taken into account for the dynamic tensile tests of three types of marine structural steels: API 2W50 and Classifications EH36 and DH36. The total number of specimens was 180 pieces. It was seen that the effects of dynamic hardening became clearer at LT than at RT. Dynamic strain aging accompanying serrated flow stress curves was also observed from high temperature tests for all kinds of steels. The dynamic hardening factors (DHFs) at the two temperature levels of LT and RT were derived at the three plastic strain levels of 0.05, 0.10, 0.15 from dynamic tensile tests. Meanwhile, no DHFs were found for the high temperature tests because a slight negative strain rate dependency due to dynamic strain aging had occurred. A new formulation to determine material constant D in a Cowper-Symonds constitutive equation is provided as a function of the plastic strain rate, as well as the plastic strain level. The proposed formula is verified by comparing with test flow stress curves, not only at intermediate strain rate ranges but also at high strain rate ranges.

Carburizing Behavior of AISI 4115 Steel with a Flow Rate of Acetylene and Specimen Location in an 1 ton-class Mass Production-type Vacuum Carburizing Furnace (1 톤급 양산형 진공 침탄로에서 아세틸렌 유량과 로 내 위치에 따른 AISI 4115 강의 침탄 거동)

  • Kwon, Gi-hoon;Moon, Kyoungil;Park, Hyunjun;Lee, Young-Kook;Jung, Minsu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.6
    • /
    • pp.272-280
    • /
    • 2021
  • The influence of acetylene flow rates on the carburizing behavior of an AISI 4115 steel in 1 ton-class mass production-type vacuum carburizing furnace has been studied through microstructure, carbon concentration, hardness analyses. The AISI 4115 steels were carburized with various flow rates (20, 32.7, 60 l/min) and locations in the furnace (top, center, bottom) at 950℃. The acetylene flow rate played an important role in controlling the carburizing properties of carburized samples, such as effective case depth and uniformity carburizing according to location in the furnace. At an acetylene flow rate of 20 l/min, the carburized samples had a shallow average hardened layer (0.645 mm) compared to the target hardening depth (1 mm) due to low carbon flux and spatial uniformity of carburization (17.8%) in the furnace. At a flow rate of 60 l/min, the carburized samples showed an average hardened layer (1.449 mm) deeper than the target hardening depth and had the spatial uniformity of carburization (98.8%). In particular, at a flow rate of 32.7 l/min, the carburized samples had an average hardened layer (1.13 mm) close to the target hardening depth and had the highest carburizing uniformity (99.1%). As a result, an appropriate flow rate of 32.7 l/min was derived to satisfy the target hardening depth and to have spatial uniform hardened layer in the furnace.

Effects of Mechanical Alloying Treatment on Age Hardening Behavior of Rapidly Solidified Al-5Cr-2Zr Alloy (급속냉각한 Al-5Cr-2Zr 합금의 시효경화에 미치는 기계적 합금화 처리효과)

  • 김완철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.29-35
    • /
    • 1994
  • The microstructual refinement process of Al-5Cr-2Zr alloys mechanical alloying 30h can be divided in five stages ; initial stage, welding predomminance stage, spherical partical formation stage, convolution welding predominance stage, and steady state. The rate of structural of aluminium splats was roughly logarithmic with processing time ; ${\in}$=k/0.78 ln(1+0.0028t). The age hardening in rapidly solidified Al-5Cr-2Zr alloys is ascribed to the coherency and dispersion hardening. Coherency hardening is occurred by matastable cubic Al3Zr precipitates in Al-Cr-Zr alloys. Dispersion hardening after mechanical alloying is attributed to the finely-dispersed $Al_2O_3$ and $Al_4C_3$ in Al-5Cr-2Zr alloys.

  • PDF

The Analysis for Surface Hardening by Repeated Sliding Contact (반복 미끄럼 접촉에 의한 표면층의 경화에 대한 해석)

  • 박준목;김석삼
    • Tribology and Lubricants
    • /
    • v.13 no.4
    • /
    • pp.71-78
    • /
    • 1997
  • Wear is affected by numerous factors-contact load, sliding velocity and distance, friction coefficient, material properties and environmental conditions. Among these wear factors, surface hardness is one of very important factors to determine wear. But surface hardness is varied by work hardening during repeated sliding contact. In this reason wear rate is increased or decreased with varying surface hardness, and transition of wear mechanism is happened. In this study, the surface hardening by accumulating residual stress was analyzed by considering the repeated sliding Hertzian contact model. The results showed that surface hardness was increased with increasing contact load, friction coefficient and contact number. And the depth of hardening layer, plastic layer and elastic layer depended upon contact load and number, but they didn't depend upon friction coefficient. The predicted surface hardness was about 1.5-1.8 times as hard as the material.

Implicit Stress Integration of the Generalized Isotropic Hardening Constitutive Model : 1. Formulation (일반 등방경화 구성관계에 대한 내재적인 음력적분 : 1. 정식화)

  • 오세붕;이승래
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.145-156
    • /
    • 1996
  • An implicit stress integration algorithm was formulated for implementing an aiusotorpic hardening constitutive model which has been based op the generalized isotropic hardening rule in nonlinear finite element analysis technique. the rate form of stress tensor was implicitly integrated using the generalized trapezoidal rule and the tangent stress-strain modulus was evaluated consistently with the nonlinear solution technique. As a result, it has been found that the nonlinear analysis with the anisotropic hardening constitutive model might be performed accurately and efficiently.

  • PDF

Effects of Strain Hardening Exponents on the Retardation of Fatigue Crack Propagation (가공경화지수가 피로균열 지연거동에 끼치는 영향)

  • 김상철;강동명
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1193-1199
    • /
    • 1990
  • Effects of strain hardening exponents on the behavior of fatigue crack propagation are experimentally investigated. The retardation effect of fatigue crack propagation after single overloading is investigated in relation to strain hardening exponent and crack closure. A relationship between crack opening ratio and strain hardening exponents is inspected through an examination of the crack closure behavior. An empirical equation relating retardation effect of fatigue crack propagation after single overloading, percent peak load and strain hardening exponent of materials is proposed.

INFLUENCE OF ALLOY COMPOSITION ON WORK HARDENING BEHAVIOR OF ZIRCONIUM-BASED ALLOYS

  • Kim, Hyun-Gil;Kim, Il-Hyun;Park, Jeong-Yong;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.505-512
    • /
    • 2013
  • Three types of zirconium base alloy were evaluated to study how their work hardening behavior is affected by alloy composition. Repeated-tensile tests (5% elongation at each test) were performed at room temperature at a strain rate of $1.7{\times}10^{-3}s^{-1}$ for the alloys, which were initially controlled for their microstructure and texture. After considering the yield strength and work hardening exponent (n) variations, it was found that the work hardening behavior of the zirconium base alloys was affected more by the Nb content than the Sn content. The facture mode during the repeated tensile test was followed by the slip deformation of the zirconium structure from the texture and microstructural analysis.

A Study on the Pladstic Instable Flow in Free Forging (자유 단조의 소성불안정 유동에 관한 연구)

  • 이용성
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.96-100
    • /
    • 2000
  • It is difficult to predict material behavior of forming process because the plastic instable flow phenomenon happens in practical forming process I. e. upsetting backward extrusion piercing indentation. In view of the direct relationship between instable material flow and quality defects of the products we should find out their phenomena, In this study we introduced the plastic spin and the kinematic hardening considering the kinematic hardening constitutive equation for rate-dependent material. Also analysis of upset forging is carried out using the rigid plastic FEM with Al7075

  • PDF