• Title/Summary/Keyword: hard particle

Search Result 217, Processing Time 0.031 seconds

Physicochemical Properties of Korean Raw Noodle Flours (우리나라 생면용 밀가루의 성질)

  • Shin, Soong-Nyong;Kim, Sung-Kon
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.418-424
    • /
    • 2005
  • The physicochemical properties of raw noodle flours (n = 11) commercially produced from Australian Standard White (ASW) (Group 1, n = 8) and blonds (Group 2, n = 3) of ASW and Australian hard, western white or hard red winter were investigated. Protein and ash contents were lower in Group 1. The tristimulus color values, mean particle size, flour swelling volume (FSV) and rheological parameters of farinograph and extensigraph were not different between two flour groups. Peak viscosity measured with Rapid Visco Analyzer was higher in Group 1. The protein content was positively correlated with mean particle size, dough stability and dough extensibility, and negatively correlated with FSV and peak viscosity. The FSV wag positively correlated with the peak viscosity. The rheological parameters of dough did not show any correlations with FSV and peak viscosity.

Particle Size Distribution and Rheological Properties of Australian Noodle Flours (호주산 제면용 밀가루의 리올로지 성질과 입도분포)

  • Yoon, Yeon-Hee;Kim, Sung-Kon
    • Applied Biological Chemistry
    • /
    • v.41 no.5
    • /
    • pp.367-371
    • /
    • 1998
  • The characteristics of four samples of noodle flours milled from Australian Standard White(ASW) wheat were compared with one sample of noodle flour prepared from a blend of hard red winter(HRW) and western white(WW) American wheats. The ASW flours had lower content of protein and ash. Farinograms revealed that the absorption of the ASW flours was slightly higher than that of the HRW-WW flour. The mixing time, however, showed no difference between ASW flours and HRW-WW flour. The stability and the mechanical tolerance index were different among ASW flours, which were lower than HRW-WW flour. The ratios of resistance to extention determined by extensigraph for ASW flours were higher except one flour than HRW-WW flour. The flours showed characteristic mean particle sizes, which may reflect the differences in hardness of wheat used in the flour production. Farinograph indices showed no correlations with protein content and extensigraph indices. The amylograph peak viscosity was inversely correlated with the protein content (p<0.05).

  • PDF

A study on the removal of particulate matters using unidirectional flushing (단방향 플러싱에 의한 입자성 물질의 제거에 관한 연구)

  • Kim, Dooil;Cheon, Subin;Hyun, Inhwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.3
    • /
    • pp.371-380
    • /
    • 2015
  • Particulate matters in a water distribution system are main causes of turbidity and discoloration of tap water. They could be removed by conventional or uni-directional flushing in a water distribution system. The behaviors and required flow velocity of particles are not well known for their flushing. A model water main and hydrant were made from transparent acrylic pipe of 30mm and 16mm in diameter, respectively. We analyzed the effect of flushing velocity, particle density, and particle diameter. We found that the existence of break-though velocities at which particles begin to be removed, and which are affected by their physical properties. The removal efficiencies seemed to be influenced by resuspension capabilities related to their upward movement from the bottom. Heavy particles like scale were hard to remove through upflow hydrant because the falling velocity, calculated using Stokes' law, was higher. Particle removal efficiencies of upward hydrant and downward drain showed minor differences. Additionally, the length between hydrant and control valve affected flushing efficiency because the particulate matters were trapped in this space by inertia and recirculating flow.

Effect of Variation in Particle Size of WC and Co Powder on the Properties of WC-Co Alloys (WC와 Co원료 입자크기 변화에 따른 WC-Co계 초경합금의 특성 변화)

  • Chung, Tai-Joo;Ahn, Sun-Yong;Paek, Yeong-Kyeun
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.171-177
    • /
    • 2005
  • The effect of variation in particle size of WC and Co powder on the properties of WC-Co alloys was investigated. WC and Co powders having different particle sizes were used in the fabrication of $WC-10\;wt\%$Co composites. High hardness and low fracture toughness alloy was obtained with the decrease in WC particle size regardless of Co particle size. It was newly found in this investigation that the initial particle size of Co as well as WC had a great role in the microstructure and properties of WC-Co hard materials. The average grain size and fracture toughness of WC-Co alloys using same WC powder size increased and their hardness decreased with the use of relatively finer Co binder.

Single Particle Irradiation System to Cell (SPICE) at NIRS

  • Yamaguchi, Hiroshi;Ssto, Yukio;Imaseki, Hitoshi;Yasuda, Nakahiro;Hamano, Tsuyoshi;Furusawa, Yoshiya;Suzuki, Masao;Ishikawa, Takehiro;Mori, Teiji;Matsumoto, Kenichi;Konishi, Teruaki;Yukawa, Masae;Soga, Fuminori
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.267-268
    • /
    • 2002
  • Microbeam is a new avenue of radiation research especially in radiation biology and radiation protection. Selective irradiation of an ionizing particle to a targeted cell organelle may disclose such mechanisms as signal transaction among cell organelles and cell-to-cell communication in the processes toward an endpoint observed. Bystander effect, existence of which is clearly evidenced by application of the particle microbeam to biological experiments, suggests potential underestimation in the conventional risk estimation at low particle fluence rates, such as environment of space radiations in ISS (International Space Station). To promote these studies we started the construction of our microbeam facility (named as SPICE) to our HVEE Tandem accelerator (3.4 MeV proton and 5.1 MeV $^4$He$\^$2+/). For our primary goal, "irradiation of single particle to cell organelle within a position resolution of 2 micrometer in a reasonable irradiation time", special features are considered. Usage of a triplet Q magnet for focussing the beam to submicron of size is an outstanding feature compared to facilities of other institutes. Followings are other features: precise position control of cell dish holder, design of the cell dish, data acquisition of microscopic image of a cell organelle (cell nucleus) and data processing, a reliable particle detection, soft and hard wares to integrate all these related data, to control and irradiate exactly determined number of particles to a targeted spot.

  • PDF

Nd2Fe14B Synthesis: Effect of Excess Neodymium on Phase Purity and Magnetic Property

  • Jadhav, Abhijit P.;Ma, Haoxuan;Kim, Dong Soo;Baek, Youn Kyung;Choi, Chul Jin;Kang, Young Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.886-890
    • /
    • 2014
  • The properties of magnetic material of Nd-Fe-B are highly affected by various factors such as particle size, magnetic anisotropy, phase purity and crystal structure. Incorporation of excess neodymium was carried out in various percentages so that it will adjust the proportion of neodymium in the host crystal after reduction treatment and finally help to improve magnetic property of a material. The interdiffusion of Nd-Fe and boron was studied for various compositions and their effect on magnetic property was understood with theoretical concepts. The factors such as amount of hard and soft phase in the reduction treated product is also responsible for the possible exchange coupling between hard and soft phase magnets for better magnetic properties.

Tribological Properties of Ti(C,N)-based Cermet after Hot Isostatic Pressing at High Nitrogen Pressure

  • Xiong, Wei-hao;Zheng, Li-yun;Yan, Xian-mei
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.663-664
    • /
    • 2006
  • Sintered Ti(C,N)-based cermets were treated with hot isostatic pressing (HIP) at different nitrogen pressures. The tribological properties of the treated cermets have been evaluated. The results show that a hard near-surface area rich in TiN formed after HIP treatment. The cermets treated at higher pressure had a relatively lower friction coefficient and specific wear rate. In all cases the microhardness of treated cermets is higher than that without HIP natridation. The wear mechanisms of cermets were hard particle flaking-off and ploughing. It was also found that the HIP natridation is well-suited for improving the tribological properties of cermets.

  • PDF

Wear Resistance Properties of Tungsten Carbide/Stainless Steel Composite Materials Prepared by Pulsed Current Sintering

  • Kawakami, Yuji;Tamai, Fujio;Enjoji, Takashi;Takashima, Kazuki;Otsu, Masaaki
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.89-90
    • /
    • 2006
  • Austenitic stainless steel has been used as a corrosion resistance material. However, austenitic stainless steel has poor wear resistance property due to its low hardness. In this investigation, we apply powder composite process to obtain hard layer of Stainless steel. The composite material was fabricated from planetary ball milled SUS316L stainless steel powder and WC powder and then sintered by Pulsed Current Sintering (PCS) method. We also added TiC powder as a hard particle in WC layer. Evaluations of wear properties were performed by pin-on-disk wear testing machine, and a remarkable improvement in wear resistance property was obtained.

  • PDF

Modeling time-dependent behavior of hard sandstone using the DEM method

  • Guo, Wen-Bin;Hu, Bo;Cheng, Jian-Long;Wang, Bei-Fang
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.517-525
    • /
    • 2020
  • The long-term stability of rock engineering is significantly affected by the time-dependent deformation behavior of rock, which is an important mechanical property of rock for engineering design. Although the hard rocks show small creep deformation, it cannot be ignored under high-stress condition during deep excavation. The inner mechanism of creep is complicated, therefore, it is necessary to investigate the relationship between microscopic creep mechanism and the macro creep behavior of rock. Microscopic numerical modeling of sandstone creep was performed in the investigation. A numerical sandstone sample was generated and Parallel Bond contact and Burger's contact model were assigned to the contacts between particles in DEM simulation. Sensitivity analysis of the microscopic creep parameters was conducted to explore how microscopic parameters affect the macroscopic creep deformation. The results show that the microscopic creep parameters have linear correlations with the corresponding macroscopic creep parameters, whereas the friction coefficient shows power function with peak strength and Young's modulus, respectively. Moreover, the microscopic parameters were calibrated. The creep modeling curve is in good agreement with the verification test result. Finally, the creep curves under one-step loading and multi-step loading were compared. This investigation can act as a helpful reference for modeling rock creep behavior from a microscopic mechanism perspective.

Effect of NCO/OH Ratio and Chain Extender Content on Properties of Polycarbonate Diol-based Waterborne Polyurethane

  • Kim, Eun-jin;Kwon, Yong Rok;Chang, Young-Wook;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.57 no.1
    • /
    • pp.13-19
    • /
    • 2022
  • Polycarbonate diol-based waterborne polyurethane (WPU) was prepared by prepolymer mixing process. The prepolymer mixture contained the polycarbonate diol, isophorone diisocyanate (IPDI), dimethylol propionic acid, triethylamine, and ethylenediamine (EDA). The NCO/OH ratio in the prepolymer was adjusted by controlling the molar ratio of IPDI, and its effects on the properties of WPU were studied. The structure of WPU was characterized by fourier transform infrared spectroscopy. The average particle size increased and viscosity decreased with increasing NCO/OH ratio and EDA content in WPU. The reduced phase separation between soft and hard segments increased glass transition temperature. The reduction in the thermal decomposition temperature could be attributed to the low bond energy of urethane and urea groups, which constituted the hard segment. Additionally, the polyurethane chain mobility was restricted, elongation decreased, and tensile strength increased. The hydrogen bond between the hard segments formed a dense structure that hindered water absorption.